简介
最近都是看图像里边的语义分割部分内容,比较有趣,同时入门Pytorch。Pytorch的主要特点是基本上所有操作都是用类来进行封装,本身自带很多类,而且你也可以根据官方的类进行修改。
数据导入,本来Pytorch就有好几个类共同实现,分别是 DataSet, DataLoader, DataLoaderIter等。
DataSet指明读取图片的路径和数目,DataLoader 实现读取数据的并行。
1. ImageFolder + DataLoader
首先我的数据是存在data_dir里边,每个子文件夹作为一类。
data_dir = '/Ryoma/data/'
from torchvision import transforms
transform = transforms.Compose([
# you can add other transformations in this list
transforms.ToTensor()
])
train_sets = datasets.ImageFolder(data_dir, transform)
train_loader = torch.utils.data.DataLoader(train_sets, batch_size=10,
shuffle=True, num_workers=4)
print(train_loader)
inputs, classes = next(iter(train_loader))
# Visualize a few images
def imshow(inp, title=None):
"""Imshow for Tensor."""
print(inputs.shape)
inp = inp[0]
inp = inp.numpy().transpose((1, 2, 0))
# mean = np.array([0.485, 0.456, 0.406])
# std = np.array([0.229, 0.224, 0.225])
# inp = std * inp + mean
plt.imshow(inp)
if title is not None:
plt.title(title)
imshow(inputs)
划分数据集
如果需要对数据集进行划分,可以采用以下方法:
num_train = len(train_dataset)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
if shuffle:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, sampler=train_sampler,
num_workers=num_workers, pin_memory=pin_memory,
)
vali