ETCD分布式缓存

一、ETCD简介

ETCD是一个高度可用的分布式键值存储系统,主要用于共享配置和服务发现。它基于Go语言实现,内部使用Raft一致性算法处理日志复制,保证多节点数据的强一致性。

ETCD的目标是构建一个高可用的分布式键值数据库,用于存储配置信息和服务发现。在分布式系统中,各种服务配置信息的管理共享和服务发现是一个基本且重要的问题。ETCD可以集中管理这些配置信息,服务端将配置信息存储于ETCD,客户端通过ETCD获取服务配置信息。此外,ETCD还提供了监听机制,客户端可以监听某个key或某些key的变更,当配置信息发生改变时,ETCD会通知客户端。

ETCD的特性包括完全复制(集群中的每个节点都可以使用完整的存档)、高可用性(可用于避免硬件的单点故障或网络问题)、一致性(每次读取都会返回跨多主机的最新写入)、简单(有一个定义良好、面向用户的API)、安全(实现了带可选的客户端证书身份验证的自动化TLS)、快速(每秒10000次写入的基准速度)和可靠(使用Raft算法实现了存储的合理分布)。

二、ETCD节点的角色

  1. Leader(领导者):Leader节点在集群中有且仅能有一个,负责向所有的Follower节点同步日志数据。同时,Leader节点还负责处理客户端的写请求,并在与Follower节点之间定期发送心跳包以检测节点的存活状态。
  2. Follower(跟随者):Follower节点从Leader节点获取日志,提供数据查询功能,并将所有修改请求转发给Leader节点。Follower节点在集群初始化时处于此状态,并等待Leader发送心跳。如果一定时间内未收到心跳,Follower会转变为Candidate状态并发起选举请求。
  3. Candidate(候选人):当Leader节点不存在或失联时,Follower节点会转变为Candidate状态,开始新的Leader节点选举。Candidate节点会向其他节点发送选举请求,并等待其他节点的回复。如果收到包括自己在内超过半数节
在大规模模型推理中,分布式缓存系统扮演着关键角色,尤其是在提升推理效率、降低延迟、优化资源利用率方面。其核心目标是通过分布式架构将模型推理过程中频繁访问的数据(如中间计算结果、KV Cache、模型参数等)缓存到高速存储中,从而减少重复计算和数据传输开销。 ### 架构设计 分布式缓存系统通常采用以下架构组件: 1. **缓存节点集群**:多个缓存服务器组成集群,用于存储模型推理过程中的临时数据。每个节点负责一部分缓存任务,支持水平扩展以应对大规模并发请求。 2. **协调服务**:如ZooKeeper或etcd,用于管理缓存节点的状态、数据分布策略及一致性维护。 3. **缓存代理层**:负责请求路由、负载均衡和缓存命中判断,将推理请求导向合适的缓存节点。 4. **本地缓存与远程缓存协同**:在推理节点本地设置一级缓存(如基于内存),远程缓存作为二级存储,实现热数据快速访问与冷数据持久化结合。 ### 实现方案 在大模型推理场景中,常见的分布式缓存实现方案包括: 1. **KV Cache 分布式管理** 针对Transformer类模型,Key-Value Cache(KV Cache)在解码过程中占据大量显存。通过将其分布到多个GPU或节点上,并结合量化技术(如INT8/INT4),可显著降低单个设备的显存压力。例如LMDeploy框架通过`--tp`参数支持张量并行,`--cache-max-entry-count`控制缓存条目数,实现高效KV缓存管理[^3]。 2. **缓存分片与一致性哈希** 利用一致性哈希算法将缓存数据均匀分布到多个节点,减少节点增减带来的数据迁移开销。该策略适用于模型参数缓存和中间结果缓存。 3. **异构缓存层级** 结合内存、SSD、甚至GPU显存构建多层级缓存系统。热数据存储于高速缓存(如GPU显存或内存),冷数据落盘,兼顾性能与成本。 4. **基于Redis的扩展方案** Redis作为高性能内存数据库,常被扩展用于分布式缓存系统。通过Redis Cluster实现数据分片,结合Lua脚本实现复杂缓存逻辑,适用于推理服务中的特征缓存、模型版本控制等场景。 5. **动态缓存淘汰策略** 采用LRU、LFU或基于模型访问模式的自适应淘汰算法,确保缓存空间高效利用。尤其在多任务并发推理中,动态调整缓存优先级可提升整体吞吐量。 ### 示例代码(基于Redis的KV缓存分发) 以下是一个简化的缓存分发逻辑示例,用于在分布式推理环境中缓存KV Cache: ```python import redis from hashlib import md5 class DistributedCache: def __init__(self, nodes): self.nodes = {md5(node.encode()).hexdigest(): redis.Redis(host=node) for node in nodes} def get_cache_key(self, key): hash_val = md5(key.encode()).hexdigest() return hash_val % len(self.nodes) def get(self, key): node_index = self.get_cache_key(key) return list(self.nodes.values())[node_index].get(key) def set(self, key, value, ttl=60): node_index = self.get_cache_key(key) list(self.nodes.values())[node_index].setex(key, ttl, value) ``` 上述代码展示了如何基于多个Redis节点实现简单的分布式缓存系统,适用于KV Cache或模型中间结果的缓存管理。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值