actuary notes[3]

文章目录

probability

  1. there are suppositions that A A A is random exercise, G G G is sample space of A A A,every event E E E of A A A corresponds with a real number which can be called as probability of E E E,that is P ( E ) P(E) P(E).
    the P is regard as a function to tranform an event to the real number belonged to the event. P ( E ) P(E) P(E) is ever greater than or equals zero for each event E; P ( E ′ ) = 1 P(E')=1 P(E)=1 when the E ′ E' E event necessarily happen; let E 1 , E 2 , . . . . E_1,E_2,.... E1,E2,.... are events which only one presents at the same time,that is to say, E i ∩ E j = ∅ E_i \cap E_j=\empty EiEj=.
    P ( E 1 ∪ E 2 ∪ . . ) = P ( E 1 ) + P ( E 2 ) + . . . P(E_1 \cup E_2 \cup ..)=P(E_1)+P(E_2)+... P(E1E2..)=P(E1)+P(E2)+...
    by the way,the following things are characteristics of probability.
  • P ( ∅ ) = 0 P(\empty)=0 P()=0.
  • P ( E 1 ∪ E 2 ∪ . . ∪ E n ) = P ( E 1 ) + P ( E 2 ) + . . . + P ( E n ) P(E_1 \cup E_2 \cup ..\cup E_n)=P(E_1)+P(E_2)+...+P(E_n) P(E1E2..En)=P(E1)+P(E2)+...+P(En),that is to say it is finite additivity.
  • P ( E 2 − E 1 ) = P ( E 2 ) − P ( E 1 ) P(E_2-E_1)=P(E_2)-P(E_1) P(E2E1)=P(E2)P(E1)
  • for a given event , P ( E ) ≤ 1 P(E) \le 1 P(E)1
  • for arbitrary event E E E, P ( E ˉ ) = 1 − P ( E ) P(\bar E)=1-P(E) P(Eˉ)=1P(E),the E ˉ \bar E Eˉ is inversed event.
    there is an important conclusion that to given both event E 1 E_1 E1 and E 2 E_2 E2, P ( E 1 ∪ E 2 ) = P ( E 1 ) + P ( E 2 ) − P ( E 1 E 2 ) P(E_1 \cup E_2)=P(E_1)+P(E_2)-P(E_1E_2) P(E1E2)=P(E1)+P(E2)P(E1E2).
    of course ,the above formula can expand to multiple event’s additivity.for example:
    P ( E 1 ∪ E 2 ∪ . . ∪ E n ) = Σ i = 1 n P ( E i ) − Σ 1 ≤ i < j ≤ n P ( E i E j ) + Σ i ≤ i < j < k ≤ n P ( E i E j E k ) + . . . + ( − 1 ) n − 1 P ( E 1 E 2 . . . E n ) P(E_1 \cup E_2 \cup ..\cup E_n)=\Sigma_{i=1} ^n P(E_i)-\Sigma_{1\le i <j \le n} P(E_iE_j)+\Sigma_{i \le i < j<k \le n}P(E_iE_jE_k)+...+(-1)^{n-1}P(E_1E_2...E_n) P(E1E2..En)=Σi=1nP(Ei)Σ1i<jnP(EiEj)+Σii<j<knP(EiEjEk)+...+(1)n1P(E1E2...En)
  1. the classical probability derives from the initial stage of probability theory,that means each one of sample space which has finite samples such as G = { G 1 , G 2 , . . . G n } G=\{G_1,G_2,...G_n\} G={G1,G2,...Gn} has the same possibility of existence.
    to compute a fundamental classical probablity is so simple because that Any two samples in sample space appear mutually exclusively and the finite additivity of probability.for example:
    P ( ∪ i = 1 n { G i } ) = P ( G ) = 1 P(\cup_{i=1}^n\{G_i\})=P(G)=1 P(i=1n{Gi})=P(G)=1
    P ( ∪ i = 1 n ) { G i } ) = Σ i = 1 n P ( G i ) = n P ( G i ) P(\cup_{i=1}^n)\{G_i\})=\Sigma_{i=1}^nP(G_i)=nP(G_i) P(i=1n){Gi})=Σi=1nP(Gi)=nP(Gi), P ( G 1 ) = P ( G 2 ) = . . . P(G_1)=P(G_2)=... P(G1)=P(G2)=...
    so that,each P ( G i ) = 1 n P(G_i)=\frac 1 n P(Gi)=n1
    the above example suppose that one event includes only one sample,but in real life,one event perhaps involves some samples,for example, G 2 G_2 G2 consists of n 2 n_2 n2 samples,then P ( G 2 ) = n 2 n P(G_2)=\frac {n_2} n P(G2)=nn2.
  2. Permutations and Combinations
  • the repetitve permutaion denotes that there are a sets A A A consisted of a a l l a_{all} aall distinct elements, we take out a p a r t a_{part} apart elements from the A A A sets one by one,achieving total progress costs a p a r t a_{part} apart times, that is to say,each time to take one out and put it back.so that, there are a a l l a p a r t {a_{all}}^{a_{part}} aallapart kinds of permutations.
  • permutation means fetching a p a r t a_{part} apart elements from a sets A A A which includes a a l l a_{all} aall elements to arrange without returning it back ,so that P a a l l a p a r t = a a l l ! ( a a l l − a p a r t ) ! P_{a_{all}}^{a_{part}}=\frac {a_{all}!} {(a_{all}-a_{part})!} Paallapart=(aallapart)!aall! kinds of permutations exists in the progress.
  • full permutation: when a a l l = a p a r t a_{all}=a_{part} aall=apart, P a a l l a p a r t = a p a r t ! P_{a_{all}}^{a_{part}}=a_{part}! Paallapart=apart!
  • combination: if we get a p a r t a_{part} apart elements from a a l l a_{all} aall distinct elements without their order for making a combination ,and do it repeatedly, then the total number of those combinations is as follows.
    C a a l l a p a r t = P a a l l a p a r t P a p a r t a p a r t = a a l l ! a p a r t ! ( a a l l − a p a r t ) ! C_{a_{all}}^{a_{part}}=\frac {P_{a_{all}}^{a_{part}}} {P_{a_{part}}^{a_{part}}}=\frac {a_{all}!} {a_{part}!(a_{all}-a_{part})!} Caallapart=PapartapartPaallapart=apart!(aallapart)!aall!
  1. we take out an integer from lots of integers with a length of 12 digits, what is the probability that the first five digits are all different ?
    in the first place,one of the first five digits is an integer ranged from 0 to 9,so we have 10 5 10^5 105 ways to make the integer which has five digits, those ways construct a sample space.in the second place, P 10 5 P_{10}^5 P105 represent the number of permutations that five digits total are distinct because that five different numbers will be choosed in a range between 0 and 9 arbitrarily.
    so that we get the probability which is P 10 5 10 5 \frac {P_{10}^5}{10^5} 105P105.

references

  1. 《数学》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翻译之海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值