Parameterized study of the test cover problem
International Symposium on Mathematical Foundations of Computer Science, 2012•Springer
In this paper we carry out a systematic study of a natural covering problem, used for
identification across several areas, in the realm of parameterized complexity. In the Test
Cover problem we are given a set [n]={1,…, n} of items together with a collection,, of distinct
subsets of these items called tests. We assume that is a test cover, ie, for each pair of items
there is a test in containing exactly one of these items. The objective is to find a minimum
size subcollection of, which is still a test cover. The generic parameterized version of Test …
identification across several areas, in the realm of parameterized complexity. In the Test
Cover problem we are given a set [n]={1,…, n} of items together with a collection,, of distinct
subsets of these items called tests. We assume that is a test cover, ie, for each pair of items
there is a test in containing exactly one of these items. The objective is to find a minimum
size subcollection of, which is still a test cover. The generic parameterized version of Test …
Abstract
In this paper we carry out a systematic study of a natural covering problem, used for identification across several areas, in the realm of parameterized complexity. In the Test Cover problem we are given a set [n] = {1,…,n} of items together with a collection, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal T$\end{document}, of distinct subsets of these items called tests. We assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal T$\end{document} is a test cover, i.e., for each pair of items there is a test in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal T$\end{document} containing exactly one of these items. The objective is to find a minimum size subcollection of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cal T$\end{document}, which is still a test cover. The generic parameterized version of Test Cover is denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(k,n,|{\cal T}|)$\end{document}-Test Cover. Here, we are given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$([n],\cal{T})$\end{document} and a positive integer parameter k as input and the objective is to decide whether there is a test cover of size at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(k,n,|{\cal T}|)$\end{document}. We study four parameterizations for Test Cover and obtain the following:
(a) k-Test Cover, and (n − k)-Test Cover are fixed-parameter tractable (FPT), i.e., these problems can be solved by algorithms of runtime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(k)\cdot poly(n,|{\cal T}|)$\end{document}, where f(k) is a function of k only.
(b) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(|{\cal T}|-k)$\end{document}-Test Cover and (logn + k)-Test Cover are W[1 …
Springer
Showing the best result for this search. See all results