贴一下汇总贴:论文阅读记录
论文链接:《HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data》
一、摘要
现有的问题回答数据集侧重于处理同类信息,要么仅基于文本,要么仅基于知识库/表格信息。然而,由于人类知识分布在不同的形式上,单独使用相同的信息可能会导致严重的覆盖问题。为了填补这一空白,我们提出了 HYBRIDQA,这是一个新的大规模问答数据集,需要对异构信息进行推理。每个问题都与一个维基百科表格和多个与表格中的实体链接的自由形式语料库对齐。这些问题旨在汇总表格信息和文本信息,即缺少任何一种形式都会导致问题无法回答。我们用三种不同的模型进行测试:1)一个只包含表的模型,2)纯文本模式,3)一种混合模型,它结合异构信息来寻找答案。实验结果表明,两种基线得到的EM评分都在20%以下,而混合模型可以达到40%以上的EM。这一差距表明有必要在 HYBRID中收集异质信息。然而,混合模型的分数仍然远远落后于人类的表现。因此,混合问答可以作为一个具有挑战性的基准来研究异构信息下的问题回答。
二、结论
我们提出了 HYBRIDQA,这是第一个通过表格和文本数据收集的混合问答数据集。我们发布数据是为了促进当前关于使用异构信息来回答现实世界问题的研究。我们将HYBRIDER设计为一个强大的基准,并提供关于该模型的有趣见解。我们认为,对于社区来说, HYBRID是一个有趣但具有挑战性的下一个问题。