马科维茨的均值方差模型(MPT)粒子群优化--Python实现

MPT

MPT, modern portfolio theory。现在资产配置理论。
理论很简单。

假设每个资产的收益率是一个随机变量xix_ixi。既然是随机变量,当然就会有均值和标准差。

如果资产数量不是只有一个的话(一个的话,做什么资产配置),也就是存在有多个随机变量,随机变量之间当然就会有协方差。

资产配置的目的就是,找到一种较好的资产配置组合,使得达到预期的收益率的情况下,风险最小。

这句话其实就已经告诉了我们这个模型该如何建立。

建模

E(rw)=∑i=1nwiriE(r_w) = \sum_{i=1}^{n}{w_ir_i}E(rw)=i=1nwiri
Var(rw)=∑i=1n∑j=1nwiwjCov(ri,rj)Var(r_w) = \sum_{i=1}^{n}{\sum_{j=1}^{n}{w_iw_jCov(r_i,r_j)}}Var(rw)=i=1n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gc.collect()

公众号“肥宅Sean”欢迎关注

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值