Spring Boot整合DeepSeek+MCP实践详解

什么是MCP?


MCP是一种开放协议,通过标准化的服务器实现,使AI模型能够安全地与本地和远程资源进行交互。
用大白话讲,MCP就是一项约定,比如前后端开发接口,需要先定义好json数据结构,MCP就类似于这个定义好的数据结构,但是具体如何生成这个json数据结构,不同的人,不同的语言会有不同的实现方式;


解决了什么问题?
解决了AI大模型因数据孤岛限制无法发挥潜力的难题。举个例子,以前我们想要AI大模型使用我们的数据,要么自己复制粘贴,要么上传下载,其中都需要人参与,MCP就是AI大模型与数据资源中间的一座桥梁,通过MCP服务和MCP客户端,只要遵循这套协议,就能实现万物互联;

MCP核心架构

MCP遵循CS架构(客户端-服务端),有三个核心概念:
MCP HOST:发起请求的LLM应用程序,可以理解为用户请求入口;
MCP Client:在应用程序内部,专门与MCP Server进行交互的工具,类似HttpClient的作用,提供调用本地MCP Server和远程MCP Server的能力;
MCP Server:为MCP Client提供各类服务,比如文件操作,数据库操作等资源服务,可本地部署,也可远程部署;

### DeepSeekMCP集成概述 DeepSeek作为一种先进的大型语言模型,在处理特定类型的复杂任务上表现出色,而MCP(Multi-Agent Collaboration Protocol)则提供了一种有效的机制来协调多个智能体之间的协作。当两者结合时,可以创建强大的自动化解决方案。 对于代码编写类的任务,倾向于采用DeepSeek作为底层支持引擎;而对于自然语言处理或者文案创作,则更偏向于使用Claude这样的预训练模型[^4]。这种灵活性使得开发者可以根据具体应用场景的需求灵活调整配置方案。 #### 集成指南 为了实现两者的无缝对接,通常会遵循以下几个原则: - **定义清晰的角色分工**:确保每个组件都有明确的功能定位。例如,通过TaskPlanner规划具体的子任务,并由ToolExecutor负责实际执行这些指令。 - **利用MCP协议促进交流**:借助该协议所提供的标准化接口,不同类型的代理之间能够高效沟通,共享必要的上下文信息。 - **实施严格的验证流程**:最后一步总是要经过ResultValidator的严格审查,以确认最终产出的质量达到预期标准。 ```python def integrate_deepseek_mcp(task): """ 将DeepSeek融入到MCP框架下的示例函数 参数: task (str): 待完成的工作描述 返回: dict: 经过验证后的结果报告 """ from deepseek import CodeGenerator, TextWriter # 导入所需的工具包 planner = TaskPlanner(task) if 'code' in planner.task_type.lower(): executor = CodeGenerator(planner.subtasks) # 对于编程相关任务启用CodeGenerator elif 'text' in planner.task_type.lower(): executor = TextWriter(planner.subtasks) # 文本生成场景下选择TextWriter else: raise ValueError('Unsupported task type') validator = ResultValidator(executor.execute()) # 获取并检验输出成果 return validator.get_final_report() ``` 此段代码展示了如何根据不同任务性质自动匹配合适的处理器实例,并且在整个过程中保持与其他参与方的良好互动关系。 #### 实际应用案例 一个典型的例子是在招聘环节中运用上述技术组合来进行候选人简历初筛工作。整个过程大致如下所示: 1. 接收HR部门提交的一批求职者资料; 2. 启动main_agent()启动程序,它内部包含了planner、executorvalidator三个主要角色; 3. 根据职位要求设定筛选条件,比如技能标签匹配度计算等; 4. 输出一份详尽的人选推荐列表供进一步审核参考。 这种方法不仅提高了工作效率,还减少了人为因素带来的偏差可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔向理想的星辰大海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值