7.< tag-动态规划和买卖股票合集>lt.121. 买卖股票的最佳时机 + lt.122.买卖股票的最佳时机 II+ lt.123. 买卖股票的最佳时机 III dbc

本文深入探讨了三种股票交易问题的解决方案:121.买卖股票的最佳时机、122.买卖股票的最佳时机II和123.买卖股票的最佳时机III。通过贪心算法和动态规划,分析了不同限制条件下获得最大利润的策略。代码实现详细展示了如何运用递推公式和状态转移来求解这些问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lt.121. 买卖股票的最佳时机

[案例需求]

在这里插入图片描述

[思路分析一, 贪心]

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

[代码实现]

class Solution {
    public int maxProfit(int[] prices) {
        //1. 贪心. 找到最小最大值
        int min = Integer.MAX_VALUE;
        int res = Integer.MIN_VALUE;

        int len = prices.length;

        for(int i = 0; i < len; i++){
            min = Math.min(min, prices[i]);
            res = Math.max(res, prices[i] - min);
        } 
        return res;
    }
}

在这里插入图片描述

[思路分析二, 动态规划]

  1. 确定dp数组以及下标

dp[i][0] 表示第i天持有股票所得最多现金, 这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多的现金。注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态. 很多同学把“持有”和“买入”没分区分清楚。

  • dp[i][x] 是第i天持有或不持有股票时, 得到的现金!!! dp是可以得到的现金!!! 如果持有股票, 那么拥有的现金是负的, 因为用现金买的股票还没卖呢!还在持有!!! 此时 dp[i][0] < 0; 相反, dp[i][1] 表示不再持有股票, 所以现金是正的!
  1. 确定递推公式
    a. 如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

b. 如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票的价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

  1. dp数组如何初始化
    由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

  1. 确定遍历顺序

从递推公式可以看出dp[i]都是有dp[i - 1]推导出来的,那么一定是从前向后遍历。

  1. 举例推导dp数组
    在这里插入图片描述
class Solution {
    public int maxProfit(int[] prices) {
        //1. 确定dp[i][x]
        //1.1 dp[i][0] 表示持有股票第i天时的现金, 
        //1.2 dp[i][1] 表示在第i天不持有股票时的现金
        int len = prices.length;
        int[][] dp = new int[len][2];

        //2. 确定递推公式;
        //dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
        //dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]);    
        
        //3.初始化
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        for(int i = 1; i < len; i++){
            dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]);   
        }

        return dp[len - 1][1];
    }
}

lt.122.买卖股票的最佳时机 II

[案例需求]

在这里插入图片描述

[思路分析一, 贪心]

  • 只要今天的股价比昨天的高我就卖出, 然后把今天和昨天累加的利润加起来你返回即可。

[代码实现]

class Solution {
    public int maxProfit(int[] prices) {
        //遍历数组, 每两个数如果是递增的, 卖出, 然后累加到res上
        int len = prices.length;
        int res = 0;

        for(int i = 1; i < len; i++){
            if(prices[i] > prices[i - 1]){
                res += (prices[i] - prices[i - 1]);
            }
        }

        return res;
    }
}

[思路分析二, 动态规划]

  1. 本题和121. 买卖股票的最佳时机 的唯一区别本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)
  2. 在动规五部曲中,这个区别主要是体现在递推公式上,其他都和121. 买卖股票的最佳时机一样一样的。
  1. 强调一下dp数组的含义:

dp[i][0] 表示第i天持有股票所得的现金
dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票 dp[i][0], 那么可以由两个状态推出来:

  1. 第i - 1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 dp[i][0] = dp[i - 1][0]
  2. 第i - 1天还未持有股票, 所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 dp[i][0] = dp[i - 1][1] - prices[i]
    在这里插入图片描述

[代码实现]

class Solution {
    public int maxProfit(int[] prices) {
        //1. 确定dp[i][x]
        //1.1 dp[i][0] 表示持有股票第i天时的现金, 
        //1.2 dp[i][1] 表示在第i天不持有股票时的现金
        int len = prices.length;
        int[][] dp = new int[len][2];

        //2. 确定递推公式;
        //dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
        //dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]);    
        
        //3.初始化
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        for(int i = 1; i < len; i++){
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]);   
        }

        return dp[len - 1][1];
    }
}

lt.123. 买卖股票的最佳时机 III

[案例需求]

在这里插入图片描述

[思路分析]

这道题目相对 121.买卖股票的最佳时机和 122.买卖股票的最佳时机II难了不少。
关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

动规五步法

  1. 确定dp数组以及下标的含义
    一天共有五种不同的状态:
  1. 没有操作; dp[i][0]
  2. 第一次买入 dp[i][1]
  3. 第一次卖出 dp[i][2]
  4. 第二次买入 dp[i][3]
  5. 第二次卖出 dp[i][4]

dp[i][j] 中i表示第i天, j为[0-4] 五个状态, dp[i][j] 表示第i天状态j所剩下的最大现金;

  1. 确定递推公式
    需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

要达到dp[i][1]状态, 有两个具体操作:

  1. 第i天已经是第一次买过股票的了: dp[i][1] = dp[i - 1][1]
  2. 第i天正好是当天第一次买入股票: dp[i][1] = dp[i - 1][0] - prices[i]
    那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

要达到dp[i][2], 注意是这个表示第一次卖出. 有两个具体操作:

  1. 第i天已经是第一次卖出股票的了: dp[i][2] = dp[i - 1][2]
  2. 第i天正好是当天第一次卖出股票: dp[i][2] = dp[i - 1][1] + prices[i]
    所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化
    在这里插入图片描述
  1. 确定遍历顺序
    从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
  1. 举例推导dp数组
    在这里插入图片描述

[代码实现]

class Solution {
    public int maxProfit(int[] prices) {
        //1. 确定dp数组, dp[i][0~4] 
        // 在第i天, 五种状态下持有的现金数量
        //0: 无操作 
        //1:  第一次买入
        //2:  第一次卖出
        //3:    第二次买入
        //4:    第二次卖出
        int len = prices.length;
        int[][] dp = new int[len][5];

        //2. 确定递推公式:
        // dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        // dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
        // dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
        // dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

        //3. 初始值;
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[0][2] = 0;
        dp[0][3] = -prices[0];
        dp[0][4] = 0;

        //4. 确定遍历: 正序,. dp[i] 需要dp[i - 1]的状态
        for(int i = 1; i < len; i++){
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }

        return dp[len - 1][4];
    }
}

待补充
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值