2. 快速在Spring Boot中集成Spring AI

1. 序言

随着Spring Boot的流行,越来越多的开发者选择利用其快速开发和简化配置的优势,构建企业级应用。Spring Boot通过自动化配置和高度的模块化,使得开发者可以更快速地实现业务功能。而Spring AI作为Spring生态的一部分,提供了与人工智能技术结合的能力,可以帮助开发者轻松将AI能力集成到Spring Boot项目中。
本篇文章将引导你如何在Spring Boot中快速集成Spring AI,并通过简单的示例实现AI功能。示例使用Spring AI集成硅基流动API进行演示。需要先申请硅基流动相关API密钥,传送门: 《硅基流动调用 DeepSeek-V3 & R1:5 分钟快速上手指南》

2. 环境准备

我这里所准备的环境:
  • Java 17 或更高版本:Spring Boot和Spring AI都依赖于Java 17及更高版本。
  • Spring Boot 3.x:Spring AI支持Spring Boot 3.2.x和3.3.x。
  • 集成的AI服务:我们将集成OpenAI的API来展示如何使用Spring AI进行智能对话,这里使用硅基流动API演示。

3. 创建Spring Boot项目

首先,使用Spring Initializr快速创建一个Spring Boot项目。具体创建步骤这里省略,Springboot版本选用3.2.x以上版本,这里选择3.4.2。

3.1. 添加依赖

添加Springboot和Spring ai相关依赖。我们集成spring-ai-bom作为依赖版本管理,截止书写这边文章时,该以来版本为1.0.0-SNAPSHOT。可参考:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.4.2</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>org.example</groupId>
    <artifactId>springboot-ai</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>springboot-ai</name>
    <description>springboot-ai</description>
    <properties>
        <java.version>17</java.version>
    </properties>

    <repositories>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <!-- Spring Boot DevTools (Optional for auto-reloading during development) -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-spring-boot-autoconfigure</artifactId>
        </dependency>
    </dependencies>

    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>1.0.0-SNAPSHOT</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>
这里只需要关注两个核心依赖:
<!-- 封装了各大模型的交互接口 -->
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
<!-- 用于各大模型进行自动装配 -->
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-spring-boot-autoconfigure</artifactId>
</dependency>

3.2. 配置API密钥

为了能够调用OpenAI API,我们需要配置一个API密钥。这里选用硅基流动API密钥。你也可以通过openai官网注册。
在application.properties中添加API密钥配置:
spring.application.name=springboot-ai
# 硅基流动API接口,默认为openai.com地址
spring.ai.openai.base-url=https://api.siliconflow.cn
# 这里是openai的api密钥
spring.ai.openai.api-key=sk-**************
# 模型名称,这里选用deepseek-V3模型。你也可以选用Qwen或GPT
spring.ai.openai.chat.options.model=deepseek-ai/DeepSeek-V3
#spring.ai.openai.chat.options.responseFormat.type=json_object

3.3. 编写交互类

到此,以上简单几步就已经把Springboot和Spring ai快速集成起来了。这里编写交互类,来具体调用大模型接口:
package org.example.springbootai;

import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatModel;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

import java.util.Map;

@RestController
public class ChatController {

    private final OpenAiChatModel chatModel;

    @Autowired
    public ChatController(OpenAiChatModel chatModel) {
        this.chatModel = chatModel;
    }


    /**
     * 这里简单实现一个接口,让用户输入一个prompt,然后返回一个结果。prompt输入一个指令,让他给我们讲个笑话
     * @param message
     * @return
     */
    @GetMapping("/ai/generate")
    public Map<String,String> generate(@RequestParam(value = "message", defaultValue = "讲个笑话") String message) {
        return Map.of("generation", this.chatModel.call(message));
    }
}

3.4. 创建启动类

@SpringBootApplication
public class AiApplication {

    public static void main(String[] args) {
        SpringApplication.run(AiApplication.class, args);
    }

}

3.5 测试与运行

到此,Springboot和Spring ai的集成已经结束了。我们运行AiApplication后,访问地址: http://localhost:8080/ai/generate。可以看到浏览器成功返回了大模型基于我们的prompt返回的文本内容:

4. 小结

本篇文章,我们展示了如何在Spring Boot项目中快速集成Spring AI,并结合OpenAI API构建一个简单的智能对话系统。通过几步简单的配置和代码实现,开发者可以快速将AI能力集成到现有的Spring Boot项目中。

### SpringBoot与硅基流动的集成方法及相关信息 #### 背景介绍 Spring Boot 是一种流行的 Java 开发框架,用于快速构建独立运行的应用程序。而硅基流动是一家专注于人工智能技术研发的企业,其提供的服务可能涉及自然语言处理、机器学习等领域。通过结合 DeepSeek4j 和硅基流动的服务,可以实现更高效的 AI 功能集成。 以下是关于如何在 Spring Boot集成硅基流动及其合作伙伴(如 DeepSeek)的技术说明: --- #### 1. 使用 DeepSeek4j 进行集成 DeepSeek4j 提供了一组功能强大的 API 接口,支持 Reasoner、Function Calling 和 JSON 解析等功能[^1]。这些接口可以帮助开发者轻松调用 DeepSeek 的核心能力,并将其嵌入到基于 Spring Boot 构建的应用程序中。 ##### Maven依赖引入 为了使用 DeepSeek4j,在项目的 `pom.xml` 文件中添加以下依赖项: ```xml <dependency> <groupId>com.deepseek</groupId> <artifactId>deepseek4j</artifactId> <version>1.0.0</version> </dependency> ``` ##### 初始化客户端 创建一个配置类来初始化 DeepSeek 客户端实例: ```java import com.deepseek.client.DeepSeekClient; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class DeepSeekConfig { @Bean public DeepSeekClient deepSeekClient() { String apiKey = "your-deepseek-api-key"; // 替换为实际的API密钥 return new DeepSeekClient(apiKey); } } ``` 注意:API 密钥可以通过硅基流动的合作平台注册获取[^2]。 --- #### 2. 获取硅基流动的 API Key 要访问硅基流动及其合作伙伴提供的服务,需先完成平台注册流程。具体步骤如下: - 访问注册页面:https://cloud.siliconflow.cn/i/pCa1dBVX。 - 登录后进入控制台,找到对应的 API 文档和密钥管理模块。 - 下载或记录生成的 API Key 并妥善保存。 此 API Key 将作为身份验证的一部分,用于后续请求中的授权操作。 --- #### 3. 实现简单的 AI 应用场景 假设我们希望利用 DeepSeek 的大模型生成功能完成一段对话交互逻辑,则可以在控制器层编写如下代码片段: ```java @RestController @RequestMapping("/api/ai") public class AiController { private final DeepSeekClient deepSeekClient; public AiController(DeepSeekClient deepSeekClient) { this.deepSeekClient = deepSeekClient; } @PostMapping("/generate") public ResponseEntity<String> generateText(@RequestBody Map<String, String> request) { try { String prompt = request.get("prompt"); String result = deepSeekClient.generate(prompt); // 调用生成器 return ResponseEntity.ok(result); } catch (Exception e) { return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(e.getMessage()); } } } ``` 上述示例展示了如何接收前端传来的提示词并通过 DeepSeek 模型返回生成的结果。 --- #### 4. 扩展功能建议 除了基本的文字生成外,还可以探索其他高级特性,例如函数调用、多轮对话记忆以及自定义模板解析等。这些都可以借助 DeepSeek4j 提供的功能逐步实现。 --- ###
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有一只柴犬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值