【华为OD机试】分披萨(动态规划-Java&Python&C++&JS实现)

本文介绍了如何运用动态规划解决华为OD机试中的一道分披萨问题。通过分析题意,阐述解题思路,提供Java、Python、C++和JavaScript的题解代码,并详细讲解了各个版本的代码实现,帮助读者深入理解并掌握动态规划在解决实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文收录于专栏:算法之翼

本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握!

一. 题目-分披萨

“吃货”和“馋嘴”两人到披萨店点了一份铁盘(圆形)披萨,并嘱咐店员将披萨按放射状切成大小相同的偶数扇形小块。但是粗心服务员将披萨切成了每块大小都完全不同奇数块,且肉眼能分辨出大小。
由于两人都想吃到最多的披萨,他们商量了一个他们认为公平的分法:从“吃货”开始,轮流取披萨。除了第一块披萨可以任意选取以外,其他都必须从缺口开始选。
他俩选披萨的思路不同。“馋嘴”每次都会选最大块的披萨,而且“吃货”知道“馋嘴”的想法。
已知披萨小块的数量以及每块的大小,求“吃货”能分得的最大的披萨大小的总和。

输入描述:

第1行为一个正整数奇数N,表示披萨小块数量。3 <= N < 500。

接下来的第2行到第N+1行(共N行),每行为一个正整数,表示第i块披萨的大小。1 <= i <= N。披萨小块从某一块开始,按照一个方向依次顺序编号为1~N。每块披萨的大小范围为[1, 2147483647]。

输出描述:

“吃货”能分得的最大的披萨大小的总和。

补充说明:

示例1

输入:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一键难忘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值