文章目录
提升YOLOv11检测能力-Conv/卷积改进:使用小波卷积WTConv目标检测改进
引言
随着YOLO系列目标检测模型的持续发展,YOLOv11进一步提升了实时目标检测的精度和速度。然而,传统卷积操作在处理复杂图像时的感受野仍然受到限制,特别是在复杂背景和小目标的检测任务中。为了解决这个问题,2024年ECCV提出的Wavelet Transform Convolution(WTConv)引入了小波变换,帮助CNN(卷积神经网络)拓展感受野,同时避免了大卷积核带来的过度参数化问题。本文将深入探讨WTConv的工作原理,如何有效地提升YOLOv11的性能,并结合实际代码实现,展现如何将其集成到YOLOv11模型中。
卷积感受野的挑战与解决方案
传统卷积层感受野的局限性
卷积神经网络(CNN)通常使用固定大小的卷积核(如3×3、5×5)来提取局部特征。尽管通过增加网络深度可以逐步扩展感受野,但这种扩展并不总是理想的。增加卷积核的大小虽能增强感受野,但会导致参数数量和计算量急剧