提升YOLOv11检测能力-Conv/卷积改进:使用小波卷积WTConv目标检测改进(附参考代码)

提升YOLOv11检测能力-Conv/卷积改进:使用小波卷积WTConv目标检测改进

引言

随着YOLO系列目标检测模型的持续发展,YOLOv11进一步提升了实时目标检测的精度和速度。然而,传统卷积操作在处理复杂图像时的感受野仍然受到限制,特别是在复杂背景和小目标的检测任务中。为了解决这个问题,2024年ECCV提出的Wavelet Transform Convolution(WTConv)引入了小波变换,帮助CNN(卷积神经网络)拓展感受野,同时避免了大卷积核带来的过度参数化问题。本文将深入探讨WTConv的工作原理,如何有效地提升YOLOv11的性能,并结合实际代码实现,展现如何将其集成到YOLOv11模型中。

卷积感受野的挑战与解决方案

在这里插入图片描述
在这里插入图片描述

传统卷积层感受野的局限性

卷积神经网络(CNN)通常使用固定大小的卷积核(如3×3、5×5)来提取局部特征。尽管通过增加网络深度可以逐步扩展感受野,但这种扩展并不总是理想的。增加卷积核的大小虽能增强感受野,但会导致参数数量和计算量急剧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一键难忘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值