YOLOv11改进Neck缝合双向特征金字塔网络BiFPN助力涨点【附案例代码】
在目标检测任务中,Neck结构的设计对多尺度特征的融合与信息流传递至关重要。传统的FPN与PAN虽然已经广泛应用于YOLO系列,但仍存在特征冗余、高层语义信息丢失等问题。为此,本文提出将 BiFPN(Bidirectional Feature Pyramid Network) 引入YOLOv11的Neck部分,通过更高效的双向路径融合策略与可学习的加权融合机制,实现检测精度和效率的双提升。
一、BiFPN简介与原理
1.1 BiFPN的提出背景
BiFPN由Google在EfficientDet中提出,主要解决传统FPN特征融合方向单一、冗余连接多、信息不均衡的问题。它的特点如下:
- 双向融合:同时支持从高到低、从低到高的信息流;
- 可学习权重:利用可训练的融合权重,实现特征自适应加权;
- 跳跃连接优化:去除低效连接,精简计算图,提高计算效率。
1.2 BiFPN结构图简述
P3_in →────┐
▼
BiFPN → P3_out
▲
P7_in →────┘