YOLO项目从零开始:超详细运行教程(图文保姆级教学)
YOLO(You Only Look Once)是一个基于深度学习的目标检测算法,广泛应用于智能识别领域。本篇保姆级教学将手把手教你如何从零开始运行一个YOLO项目,适合完全没有基础的新手。
注意:本指南为0基础新手,老手可跳着学习观看。
下载项目
下载后解压到本地目录,例如:D:\YOLOProject。
项目目录浅析
安装Python环境
打开 Python官网,下载 Python 3.8+ 版本(建议3.8/3.9,兼容性更好)。
安装时记得勾选 Add Python to PATH,然后点击 Install Now。
安装完成后,在终端或CMD中输入以下命令检查是否安装成功:
python --version
安装虚拟环境Anaconda使用conda创建、运行虚拟环境
🧪 安装虚拟环境(Anaconda方式)
如果你选择使用 Anaconda 管理环境(更图形化、管理方便),可按以下方式进行。
✅ 安装 Anaconda
- 访问官网:https://www.anaconda.com/products/distribution
- 下载适合你系统的 Anaconda 安装包(Windows/macOS/Linux)
- 一路默认安装即可(建议添加到系统 PATH)
安装完成后可通过以下命令验证是否安装成功:
conda --version
🧱 使用 conda 创建虚拟环境
- 打开 Anaconda Prompt 或终端,执行以下命令创建虚拟环境:
conda create -n yolo_env python=3.10 -y
这里我们创建了一个名为 yolov8_env
的虚拟环境,并指定 Python 版本为 3.9(YOLOv8 通常与 3.8/3.9兼容性较好)。
- 激活环境:
conda activate yolo_env
📦 使用 conda 安装依赖(此处可以不看,直接跳过,我们后面采用Pip安装依赖)
此处可以不看,直接跳过,我们后面采用Pip安装依赖
有些项目会提供 environment.yml
文件,可直接用以下命令构建环境:
conda env create -f environment.yml
conda activate yolov8_env
如果没有 environment.yml
,就使用手动安装方式:
pip install -r requirements.txt
你也可以根据实际情况添加 GPU 加速支持,例如安装带 CUDA 的 PyTorch:
# 根据你显卡和系统选择合适版本:
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
安装Pycham
访问 PyCharm官网,下载社区版(Community)或专业版。
安装完成后启动 PyCharm。
若你已有其他编辑器(如 VSCode),也可以跳过此步骤。
✅ 配置 PyCharm 解释器为 Conda 环境(可选)
如果你在使用 PyCharm,也可以将 Conda 虚拟环境添加为项目解释器:
- 打开 PyCharm →
File > Settings > Project > Python Interpreter
- 点击右上角齿轮图标 →
Add
- 选择左侧的 Conda Environment
- 选择 Existing environment
- 选择路径(例如
C:\Users\你的用户名\anaconda3\envs\yolov8_env\python.exe
) - 点击 OK 即可
这样你就完成了 基于 Conda 的虚拟环境安装与配置,后续直接激活环境并运行 YOLO 项目即可。
打开项目
直接把项目拖到PyCharm里打开项目,点击信任项目。
选择虚拟环境
在设置里选择之前创建的环境。
安装依赖
重要;自查一下项目根目录下的requirements.txt和下面的内容是否一样,如果不一样,之前全部替换。
# Ultralytics requirements
# Usage: pip install -r requirements.txt
# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.22.2 # pinned by Snyk to avoid a vulnerability
opencv-python>=4.6.0
pillow>=7.1.2
pyyaml>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
pandas>=1.1.4
seaborn>=0.11.0
# Extras --------------------------------------
psutil # system utilization
py-cpuinfo # display CPU info
# thop>=0.1.1 # FLOPs computation
# ipython # interactive notebook
# albumentations>=1.0.3 # training augmentations
# pycocotools>=2.0.6 # COCO mAP
# roboflow
PyQt5==5.15.6
PyQt5-sip>=12.9.0
PyQt5-Qt5>=5.15.2
torch>=1.10.0
torchvision>=0.11.0
opencv-python>=4.5.5
numpy>=1.21.0
matplotlib>=3.5.1
pycocotools>=2.0.4
PyYAML>=6.0
tqdm>=4.64.0
ultralytics>=8.0.0
确认完毕requirements后就可以安装依赖了。
运行命令
pip install -r requirements.txt
等待其依赖完全安装完毕
如果报错怎么办
如果遇到报错,比如下面这种,无非是依赖没安装
pip install PyQt5
还有其他错误,高效的解决方式是:
而不是(可以私信,但是这种错误,我看到了也会在空闲时间百度一下,把解决代码抛给你,效率很慢)
运行项目—启动YOLO
执行命令
python ./youi/main.py
启动项目如下。
控制台输出警告
看到命令行有些许警告、报错但不影响运行
✅ 总结
至此,我们已经完整跑通了YOLO项目的安装与启动流程,无论你是零基础小白还是刚入门的AI新兵,只要按部就班操作,也能轻松实现目标检测项目的落地。
从下载安装Python、Anaconda,配置虚拟环境,到PyCharm解释器切换、依赖安装、报错排查,再到成功运行项目,整个过程看似繁琐,但只要你肯照着做,每一步都不难!
请记住这些关键操作:
- ✅ 项目结构要清楚:看懂目录,知道哪些文件能动、哪些是配置
- ✅ 虚拟环境要规范:不乱用系统Python,避免环境冲突
- ✅ 依赖要匹配版本:有问题先查
requirements.txt
是否正确 - ✅ 启动路径要对:运行路径别搞错,模块导入别混乱
- ✅ 出错先百度:80%的问题别人都遇到过,别慌!
最后,送你一句话:
“不会是学不会,只是不敢开始。”
还有,项目跑起来了,就尽量不要去动它,不然bug会越来越多。