坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
前言
在人工智能与计算机视觉快速发展的今天,人体姿态识别已成为研究和应用的热门领域。无论是在智慧教室、办公室健康管理、康复训练,还是在驾驶员疲劳检测、青少年脊柱侧弯防控等场景中,人体坐姿的标准性与否直接影响着健康、安全和效率。为了推动这一领域的研究与应用,本文将详细介绍一个经过精心整理和标注的 坐姿标准好坏姿态数据集。该数据集已经完成 train、test、val 的科学划分,并附有完整标注文件,可直接用于深度学习模型的训练与测试。
源码下载
链接:https://pan.baidu.com/s/17AkHdFB-vIIiopfEM_z0Ow?pwd=pxn2
提取码:pxn2 复制这段内容后打开百度网盘手机App,操作更方便哦
数据集概述
人体姿态识别最早多应用于体育训练和动作捕捉,而随着人机交互、办公场景健康管理的需求上升,坐姿检测成为一个细分但极具价值的研究方向。良好的坐姿不仅关乎形体美观,更是影响脊柱健康的重要因素。长期的不良坐姿可能导致腰椎间盘突出、颈椎病、肩周炎、青少年驼背等问题。因此,借助计算机视觉构建一个自动化的坐姿识别系统显得尤为重要。
本数据集正是基于这一背景构建。它涵盖了 “标准坐姿”与“非标准坐姿” 两大类,其中非标准坐姿进一步细化为多种典型错误姿态,例如:
- 驼背/弯腰坐姿
- 身体倾斜坐姿(左倾、右倾)
- 跷二郎腿坐姿
- 趴桌坐姿
- 含胸低头坐姿
在数据采集过程中,考虑到不同性别、身材、年龄段的个体差异,数据集涵盖了多种人群和场景,从而提升了模型的泛化能力。
此外,为了更好地支持深度学习模型的训练,数据集对图片进行了 高质量标注。标注不仅包括 类别标签(好姿态 / 坏姿态),还提供了 关键点位置(人体骨架点) 与 边界框信息,从而兼顾分类、检测与关键点回归等多种任务需求。
数据集详情
该数据集按照标准的深度学习流程,分为 训练集(train)、验证集(val)、测试集(test) 三部分,保证了科学的实验设计和模型评估。
1. 数据划分比例
- 训练集(train):约 70%,用于模型学习。
- 验证集(val):约 15%,用于参数调优。
- 测试集(test):约 15%,用于最终性能评估。
这种划分方式既保证了足够的训练样本量,又确保了模型在未见过的数据上能够得到公正的评价。
2. 数据规模与类别分布
这种不均衡的数据分布符合真实世界情况,即错误姿态在日常生活中更为常见,也为后续的不平衡分类问题提供了研究价值。
3. 数据格式与标注方式
- 图片格式:JPEG/PNG,分辨率在 640×480 至 1280×720 之间。
- 标注文件格式:YOLO 格式 / COCO JSON 格式。
- 标注内容:
- 类别标签(0=好坐姿,1=坏坐姿,各子类分别编号)。
- 关键点标注(如肩膀、颈部、腰椎、膝盖、脚踝等 17 个关键点)。
- 边界框(Bounding Box,用于检测任务)。
标注文件示例(YOLO 格式):
1 0.45 0.52 0.30 0.50
含义:类别 ID=1(坏姿态),边界框中心点在 (0.45, 0.52),宽度 0.30,高度 0.50(相对比例坐标)。
COCO JSON 示例片段:
{
"images": [{"id": 1, "file_name": "bad_pose_001.jpg", "height": 720, "width": 1280}],
"annotations": [
{
"id": 1,
"image_id": 1,
"category_id": 2,
"bbox": [320, 180, 400, 600],
"keypoints": [350, 200, 2, 360, 250, 2, 400, 500, 2],
"num_keypoints": 17
}
],
"categories": [
{"id": 0, "name": "good_posture"},
{"id": 1, "name": "bad_posture"}
]
}
适用场景
该数据集具有极高的实用价值,主要应用场景如下:
1. 教育与青少年脊柱健康监测
青少年正处于脊柱发育的关键阶段,长期不良坐姿容易导致驼背和脊柱侧弯。通过深度学习模型训练,本数据集可帮助开发 智能教室坐姿检测系统,在课堂中实时监控学生坐姿,提醒纠正,从而预防长期损伤。
2. 办公室健康管理
长时间伏案工作容易造成“职场病”,如颈椎病和腰椎问题。本数据集可用于开发 办公室坐姿提醒应用,结合摄像头和 AI 模型,实时检测上班族是否保持良好坐姿,必要时发出提醒。
3. 驾驶员疲劳与安全监测
在汽车驾驶场景中,驾驶员如果出现含胸、身体倾斜甚至趴靠方向盘等不良姿态,往往是疲劳的信号。基于本数据集训练的模型可用于 驾驶员状态监控系统,提高行车安全。
4. 医疗康复与物理治疗
康复训练和理疗过程中,保持标准的姿态尤为重要。本数据集可用于开发 康复姿态纠正系统,帮助医生与患者进行康复训练的科学指导。
5. 人机交互与智能家居
未来的智能家居中,坐姿检测可以与智能桌椅、可调节显示屏联动,自动优化用户的使用体验。例如,当系统检测到用户趴桌子时,可自动调整桌面高度或提醒用户。
结语
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
未来,我们还计划在以下方向进行扩展:
- 多模态融合:结合 RGB 图像与深度图(Depth)提升识别精度。
- 实时检测优化:结合轻量化模型(如 YOLOv8n、MobileNetV3)实现边缘设备实时部署。
- 数据增强:进一步增加光照变化、遮挡情况的样本,提升模型鲁棒性。
- 跨场景适配:扩展至不同文化、场景下的坐姿数据,提升全球适用性。
我们相信,借助这一数据集,研究者与开发者能够更快构建高精度的姿态检测系统,推动人类健康与人工智能的深度结合。