随着大语言模型(LLM)的广泛应用,许多开发者和研究人员希望能够在本地部署和使用这些模型,以减少对云服务的依赖,同时提高数据隐私性和交互性能。今天,我们将通过一个简易教程,介绍如何在本地部署大语言模型,使用 Ollama 搭配 Deepseek_R1 模型,并通过 OpenWebUI 提供友好的 Web 界面来进行交互。
技术栈概览
- Ollama:一个支持多种大语言模型的开源框架,能够在本地运行各种优化过的语言模型。
- Deepseek_R1:一个优化的大语言模型,适用于本地部署,支持文本生成和问题回答等任务。
- OpenWebUI:一个开源 Web 界面工具,可以与 Ollama 配合,提供与模型交互的可视化界面。
通过本教程,你将学会如何在自己的计算机上搭建并使用这一技术栈,以便通过 Web 浏览器与本地部署的 Deepseek_R1 模型进行交互。
步骤 1:安装 Ollama
Ollama 是一个基于开源的框架,它支持多个大语言模型,并允许用户在本地机器上高效运行这些模型。首先,确保你的计算机系统能够支持 Ollama。
1.1 安装 Ollama
根据你的操作系统,选择适合的安装方法。
-
Windows:访问 Ollama 官网 下载并安装 Windows 版本。
-
macOS:在终端中运行以下命令安装 Ollama:
brew in