本地部署大语言模型:Ollama + Deepseek_R1 + OpenWebUI 快速上手

随着大语言模型(LLM)的广泛应用,许多开发者和研究人员希望能够在本地部署和使用这些模型,以减少对云服务的依赖,同时提高数据隐私性和交互性能。今天,我们将通过一个简易教程,介绍如何在本地部署大语言模型,使用 Ollama 搭配 Deepseek_R1 模型,并通过 OpenWebUI 提供友好的 Web 界面来进行交互。

技术栈概览

  • Ollama:一个支持多种大语言模型的开源框架,能够在本地运行各种优化过的语言模型。
  • Deepseek_R1:一个优化的大语言模型,适用于本地部署,支持文本生成和问题回答等任务。
  • OpenWebUI:一个开源 Web 界面工具,可以与 Ollama 配合,提供与模型交互的可视化界面。

通过本教程,你将学会如何在自己的计算机上搭建并使用这一技术栈,以便通过 Web 浏览器与本地部署的 Deepseek_R1 模型进行交互。


步骤 1:安装 Ollama

Ollama 是一个基于开源的框架,它支持多个大语言模型,并允许用户在本地机器上高效运行这些模型。首先,确保你的计算机系统能够支持 Ollama。

1.1 安装 Ollama

根据你的操作系统,选择适合的安装方法。

  • Windows:访问 Ollama 官网 下载并安装 Windows 版本。

  • macOS:在终端中运行以下命令安装 Ollama:

    brew in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

威哥说编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值