请关注微信公众号:拾荒的小海螺
博客地址:http://lsk-ww.cn/
1、简述
布隆过滤器 (Bloom Filter)是一种空间效率高、时间效率低的数据结构,用于判断一个元素是否存在于一个集合中。它基于一个位数组和多个哈希函数实现,当一个元素被添加到集合中时,会将其哈希到位数组中的多个位置,并将对应的位设置为1;当判断一个元素是否在集合中时,只需检查位数组中的对应位置是否为1即可。
哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的 1/8 或 1/4 的空间复杂度就能完成同样的问题。
布隆过滤器可以插入元素,但不可以删除已有元素。其中的元素越多,误报率越大,但是 漏报是不可能的。
2、原理
BloomFilter 的算法是,首先分配一块内存空间做 bit 数组,数组的 bit 位初始值全部设为 0。
加入元素时,采用 k 个相互独立的 Hash 函数计算,然后将元素 Hash 映射的 K 个位置全部设置为 1。
检测 key 是否存在,仍然用这 k 个 Hash 函数计算出 k 个位置,如果位置全部为 1,则表明 key 存在,否则不存在。