sqoop原理

sqoop,各位看官基本上都了解或者听说过,小二就不进行废话了。另外基于国内大部分用的为CDH,小二就想说一点:CDH中的sqoop2其实是apace版的sqoop1,聪明的看官不要被表面所迷惑了.

第一关:无图无真相
这里写图片描述

第二关:无错不欢
一般会有四类问题
1.缺少jdbc导致错误
2.无法解析的错误
一般会有一下这几种情况:
a.分割符的问题
要么分割符不正确,要么就是数据不纯,有特殊字符
b.mysql库和hive库中的表结构不一致.
c.mysql字段长度不够。
d.字段格式不匹配。
e.mysql与hive中的字段不对应 顺序、数目
f.mysql数据库处于锁表中
3.数据倾斜
解决办法:
1.增大m数,缓解数据倾斜
2.了解数据分布,更改–split-by,或者进行表的拆分
4.–split-by 非主键时要特别注意NULL,另外内–split-by对于非数字类型的比如varchar的支持不是特别的好
第三关 无例难成米
在原有的目录下进行追加,目录可以存在,可以重复运行。

import --append --connect jdbc:mysql://hadoop-7:3306/test --username root --password 123456 --table cae01_psnmrtginfo_chenx --target-dir /usr/input/db -m 1

mysql导入到hive

sqoop  import --connect jdbc:mysql://192.168.2.23:3306/testdb  -- username root --password hadoop --table dwd_icc_clnt_bkinfo  --hive-database dsc_dwd  --hive-table dwd_icc_clnt_bkinfo  --hive-import --hive-overwrite  --null-string '\\N' --null-non-string '\\N' -m 1
sqoop import --append --connect jdbc:mysql://192.168.20.118:3306/test --username dyh --password 000000 --table userinfos --columns "id,age,name"  --where "id > 3 and (age = 88 or age = 80)"  -m 1  --target-dir /user/hive/warehouse/userinfos2 --fields-terminated-by ","
sqoop create-hive-table --connect jdbc:mysql://localhost:3306/test --table users --username dyh  --password 000000 --hive-table users  --fields-terminated-by "\0001"  --lines-terminated-by "\n";
sqoop export --connect "jdbc:mysql://192.168.2.23/test/CCS_CUSTOMER:3306/buzi_data_tm?useUnicode=true&characterEncoding=utf-8" --username root  --password hadoop  --table dws_dsst_t_user --export-dir /user/hive/warehouse/dsc_dws.db/dws_i_ccs_ccs_customer/date=20151111  --input-fields-terminated-by '|' --input-null-non-string '\\N' --input-null-string '\\N' -m 1
/usr/bin/sqoop    import   -libjars /home/admin/packages/data_import/201512301112/config/../lib/ojdbc6-11.2.0.2.0.jar   --connect 'jdbc:oracle:thin:@192:1555:test' --username root--password 123456   --query 'select LAST_MODIFY_TIME from RMPS.TM_RULE'  --split-by id --target-dir /user/hdfs/RMPS.TM_RULE --hive-database raw_datas --hive-table a_RMPS_rmps_TM_RULE_20151230 --hive-import -m 1 --hive-delims-replacement \30 --null-string '\\N' --null-non-string '\\N'

最后一关:注意打Boss
1.用sqoop数据中最好不要有像 ’ 等特殊字符,不然可能会报无法解析

就先这些啦!呼呼~

Sqoop是一个用于在关系型数据库和Hadoop之间进行数据传输的工具。它的工作原理可以简单概括为以下几个步骤: 1. 连接数据库:首先,Sqoop会使用提供的连接信息(包括数据库URL、用户名和密码)连接到关系型数据库。 2. 选择数据:然后,Sqoop会根据指定的表名或查询语句选择要导入或导出的数据。 3. 数据传输:Sqoop会将选定的数据从关系型数据库中提取出来,并将其转换为适合Hadoop处理的格式(如文本文件或Avro文件)。 4. 数据存储:接下来,Sqoop会将转换后的数据存储到Hadoop分布式文件系统(HDFS)或其他支持的存储系统(如HBase或Hive)中。 5. 完成任务:最后,Sqoop会返回任务的执行结果,包括导入或导出的数据量、执行时间等信息。 总的来说,Sqoop通过连接数据库、选择数据、数据传输和数据存储等步骤,实现了关系型数据库与Hadoop之间的数据交互。这使得用户可以方便地将关系型数据库中的数据导入到Hadoop中进行分析和处理,或将Hadoop中的数据导出到关系型数据库中进行存储和查询。\[1\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [Sqoop基本原理及常用方法](https://blog.csdn.net/weixin_48482704/article/details/109821541)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shengjk1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值