R的seurat和python的scanpy对比学习

本文比较了单细胞分析工具seurat和scanpy在数据预处理、降维分析、聚类和差异表达等方面的功能,强调了seurat的集成流程和scanpy的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在的单细胞分析,往往避免不了scanpy的使用,我们可以通过对比seurat来学习scanpy

今天的格式怎么都改不了。。。手机阅读有点费劲,,推荐电脑阅读。

单细胞数据分析概览

单细胞分析,总流程


python教程

 

seurat教程

seurat中与scanpy对等的函数操作

数据预处理

Seurat (R)

CreateSeuratObject(): 创建Seurat对象。

NormalizeData(): 数据标准化。

FindVariableFeatures(): 识别高变异基因。

ScaleData(): 数据缩放和中心化。

Scanpy (Python)

sc.read() / sc.read_10x_mtx(): 读取数据创建AnnData对象。

sc.pp.normalize_total(): 数据标准化。

sc.pp.highly_variable_genes(): 识别高变异基因。

sc.pp.scale(): 数据缩放和中心化。


降维分析

Seurat (R)

RunPCA(): 主成分分析(PCA)。

RunUMAP(): UMAP降维。

RunTSNE(): t-SNE降维。

Scanpy (Python)

sc.tl.pca(): 主成分分析(PCA)。

sc.tl.umap(): UMAP降维。

sc.tl.tsne(): t-SNE降维。


聚类分析

Seurat (R)

FindNeighbors(): 计算邻居图。

FindClusters(): 基于图的聚类。

Scanpy (Python)

sc.pp.neighbors(): 计算邻居图。

sc.tl.louvain() / sc.tl.leiden(): 基于图的聚类。


差异表达分析

Seurat (R)

FindMarkers(): 寻找差异表达基因。

Scanpy (Python)

sc.tl.rank_genes_groups(): 寻找差异表达基因。


数据可视化

Seurat (R)

DimPlot(): 降维数据可视化。

FeaturePlot(): 基因表达水平可视化。

VlnPlot(): 小提琴图展示基因表达分布。

Scanpy (Python)

sc.pl.umap() / sc.pl.tsne(): 降维数据可视化。

sc.pl.dotplot() / sc.pl.violin(): 基因表达水平可视化。

为何seurat中没有与scanpy中的sc.pp.log1p(adata)对应步骤

有几个方面考虑:

1. 数据标准化方法的差异

Seurat和Scanpy在数据预处理和标准化方面采取了不同的方法。Seurat的NormalizeData函数默认使用的是LogNormalize方法,这个方法首先对每个细胞的基因表达量进行归一化处理,使得每个细胞的总表达量相同(默认是1e4),然后对归一化后的表达量加1后取对数(使用自然对数)。这个过程实质上包含了与Scanpy中sc.pp.normalize_total后跟sc.pp.log1p相似的步骤,只是Seurat将其整合在了一个步骤中进行。

2. 集成的处理流程

Seurat的设计哲学是提供一个相对简化和集成的分析流程,使得用户可以通过少量的函数调用完成从数据预处理到高级分析的整个过程。因此,Seurat在其标准化函数中内置了对数变换,而无需用户手动进行这一步。这种设计选择简化了分析流程,减少了需要记住的函数数量,但也意味着用户在使用过程中可能对于数据处理的每一步不如Scanpy那样清晰明了。

3. 灵活性与透明度

Scanpy采取的是更模块化的策略,每个处理步骤都由不同的函数完成。这种方法提供了更大的灵活性和透明度,使得用户能够更清楚地看到数据是如何被逐步处理和分析的。这对于需要定制处理流程的研究人员来说是一个优点。

看完记得顺手点个“在看”哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值