可视化中的小心机

写在开头

数据分析中经常会有一些模棱两可的数据出现。如何让数据“为我所用”就很需要数据处理的技巧了。

问题来源

DotPlot(subset_data,features =           c( "Tmsb10",            'COL1A1','POSTN','CCN2',"FN1","TGFB1"          )%>% stringr::str_to_title() ,group.by ='group_by_split' )+RotatedAxis()getwd()DotPlot(subset_data,features =           c( "Tmsb10",             'COL1A1','POSTN','CCN2',"FN1","TGFB1"          )%>% stringr::str_to_title() ,group.by ='group_by_split' )+RotatedAxis()+  ggplot2::coord_flip()

我研究的课题中Postn为关键分子,我想证明:在myofibroblast细胞中SIO2组别的Postn表达比NS高。

从上面的Dotplot图,根本看不出来孰高孰低,那怎么办?

解决办法

我知道,你可能也像我一样不止一次遇到过这种苦恼。理论上myofibroblast细胞中在SIO2刺激之后的Postn表达就会比NS高,但是目前的dotplot上来看升高并不明显。

我们可以调整scale  bar,说不定会有惊喜发现

p=DotPlot(subset_data ,col.max = 3,col.min = 2,          features =   c( "Tmsb10",                          'COL1A1','POSTN','CCN2',"FN1","TGFB1"          )%>% stringr::str_to_title(),group.by ='group_by_split')+RotatedAxis()p2 =    p+ggplot2::coord_flip()+ theme(axis.text.x = element_text(angle = 45,size = 9)) #,face = 'bold'print(p2)

这样的图不是我想要的,我需要在sio2组别高!换一张看看

p=DotPlot(subset_data ,col.max = 1.2,col.min = 1,          features =   c( "Tmsb10",                          'COL1A1','POSTN','CCN2',"FN1","TGFB1"          )%>% stringr::str_to_title(),group.by ='group_by_split')+RotatedAxis()p2 =    p+ggplot2::coord_flip()+ theme(axis.text.x = element_text(angle = 45,size = 9)) #,face = 'bold'print(p2)

上面这图其他基因的存在会影响我的判断,再换一张

p=DotPlot(subset_data ,col.max = 1.2,col.min = 1,          features =   c(  'POSTN'          )%>% stringr::str_to_title(),group.by ='group_by_split')+RotatedAxis()p2 =    p+ggplot2::coord_flip()+ theme(axis.text.x = element_text(angle = 45,size = 9)) #,face = 'bold'print(p2)

神奇吗?本来NS组别的postn是高表达,但是现在图上sio2组别显示的更高!

什么?你觉得这还不够明显?那我们再改!

p=DotPlot(subset_data ,col.max = 1.2,col.min = 1,dot.scale = 15,          features =   c(  'POSTN'          )%>% stringr::str_to_title(),group.by ='group_by_split')+RotatedAxis()p2 =    p+ggplot2::coord_flip()+ theme(axis.text.x = element_text(angle = 45,size = 9)) #,face = 'bold'print(p2)

现在够明显了吧!

对比一下第三张图:

相同的数据,我们似乎可以得到截然相反的数据。是不是随心所欲了?你会这样玩弄单细胞可视化吗

思考

你认同这种夸张的处理方式吗?

数据分析究竟如何才是正确的

你还相信数据可视化吗?

是不是我想用哪种就用哪种呢?

下期再见~ 

看完记得顺手点个“在看”哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值