ShinyCell: 让不会单细胞分析的小白也可以做可视化分析,随手画出细胞比例图

鉴于有些读者对单细胞分析还不是很熟练,但是又想要看单细胞数据里某个基因的表达,或者某种细胞的分组比例,或者画umap图、画小提琴图....

今天的推文就是解决这个问题。 

  • ShinyCell 包

ShinyCell 是一个用于单细胞分析的工具,旨在让对单细胞分析不熟悉的用户也能够轻松进行可视化分析。该工具的特点是简单易用,用户无需具备专业的单细胞分析技能,即可通过简单操作完成数据可视化。

ShinyCell 提供了一个直观的界面,用户可以通过简单的拖拽、点击等操作,快速生成细胞比例图。该工具采用了直观的图形表示,使用户能够直观地了解样本中各种细胞类型的比例分布情况。

除了细胞比例图外,ShinyCell 还可能提供其他功能,例如数据过滤、聚类分析等,以帮助用户更好地理解单细胞数据。


  • 下面进入实战

  • 1 安装r包

reqPkg = c("data.table", "Matrix", "hdf5r", "reticulate", "ggplot2",            "gridExtra", "glue", "readr", "RColorBrewer", "R.utils", "Seurat")newPkg = reqPkg[!(reqPkg %in% installed.packages()[,"Package"])]if(length(newPkg)){install.packages(newPkg)}# If you are using h5ad file as input, run the code below as well# reticulate::py_install("anndata")reqPkg = c("shiny", "shinyhelper", "data.table", "Matrix", "DT", "hdf5r",            "reticulate", "ggplot2", "gridExtra", "magrittr", "ggdendro")newPkg = reqPkg[!(reqPkg %in% installed.packages()[,"Package"])]if(length(newPkg)){install.packages(newPkg)}devtools::install_github("SGDDNB/ShinyCell")

  • 2 读入制备好的rds数据并导出为shinycell对象

#2读入数据并导出为shinycell对象--------library(Seurat)library(ShinyCell)seu = readRDS("~/gzh/pbmc3k_final_seurat_v5.rds")scConf = createConfig(seu)makeShinyApp(seu, scConf, gene.mapping = TRUE,             shiny.title = "ShinyCell Quick Start")

导出对象之后,会在当前工作路径下产生shinyApp文件夹

  • 3  进入shinyApp文件夹,点击ui.R文件,就可以运行

  • 4.运行结果如下

在这个界面,你就可以进行可视化分析了,这里r包提供了7中可视化的方法

还等什么,快行动吧~

如果读者还有疑问,点赞支持,后期出shinycell的视频演示

看完记得顺手点个“在看”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值