使用sapply()按列选择top10基因名称 行列函数

博客涉及Python、Java和前端相关内容,但具体信息缺失。Python和Java是后端常用编程语言,前端则负责网页的展示与交互,三者在信息技术领域都有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 



# 创建数据框
data <- data.frame(
  node_name = c("Il1rn", "Thbs1", "Plaur", "Mmp14", "Arg2", "Ccr5", "Mmp12", "Itgam", "Fn1", "Vegfa", "Lgals3", "Csf1r", "Spp1", "Il1a", "Il1b", "Il6", "Tnf", "Hif1a", "Arg1", "Ctss", "Csf1", "Ctsb", "Ccl2", "Anxa5"),
  MCC = c(1088640, 8.71e+07, 1.25e+08, 3679200, 4.35e+07, 7.19e+09, 1.68e+08, 1.47e+10, 1.47e+10, 1.27e+10, 2.01e+09, 1.45e+10, 1.47e+10, 1.46e+10, 1.47e+10, 1.47e+10, 1.47e+10, 1.26e+10, 1.35e+10, 1.01e+09, 1.47e+10, 8391600, 1.47e+10, 7.19e+09),
  DMNC = c(0.88234, 0.93467, 0.91537, 0.86346, 0.93664, 0.96921, 0.91478, 0.9505, 0.9722, 0.9515, 0.94026, 0.99168, 0.97644, 0.9609, 0.93459, 0.93459, 0.93459, 0.9381, 1.00383, 0.93332, 0.9609, 0.88963, 0.93459, 0.98716),
  MNC = c(11, 14, 16, 12, 12, 16, 17, 22, 21, 19, 18, 18, 20, 21, 23, 23, 23, 19, 17, 16, 21, 14, 23, 16),
  Degree = c(11, 14, 16, 12, 12, 16, 17, 22, 21, 19, 18, 18, 20, 21, 23, 23, 23, 19, 17, 16, 21, 14, 23, 16),
  EPC = c(8.892, 10.933, 11.089, 9.519, 9.702, 11.188, 11.419, 12.85, 12.411, 12.236, 12.041, 11.948, 12.258, 12.694, 12.788, 12.825, 12.766, 11.861, 11.644, 11.053, 12.327, 10.221, 12.917, 11.298),
  BottleNeck = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1),
  EcCentricity = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5),
  Closeness = c(17, 18.5, 19.5, 17.5, 17.5, 19.5, 20, 22.5, 22, 21, 20.5, 20.5, 21.5, 22, 23, 23, 23, 21, 20, 19.5, 22, 18.5, 23, 19.5),
  Radiality = c(1.6087, 1.73913, 1.82609, 1.65217, 1.65217, 1.82609, 1.86957, 2.08696, 2.04348, 1.95652, 1.91304, 1.91304, 2, 2.04348, 2.13043, 2.13043, 2.13043, 1.95652, 1.86957, 1.82609, 2.04348, 1.73913, 2.13043, 1.82609),
  Betweenness = c(0.46337, 1.35789, 3.53028, 1.14372, 0.28571, 2.10332, 4.19283, 8.80339, 6.45642, 5.26214, 4.49066, 3.00565, 5.22941, 7.11368, 11.36147, 11.36147, 11.36147, 5.7859, 1.8684, 2.81517, 7.10416, 2.01979, 11.36147, 1.52224),
  Stress = c(6, 16, 36, 14, 4, 24, 46, 98, 76, 58, 50, 36, 62, 80, 120, 120, 120, 62, 24, 32, 80, 24, 120, 20),
  ClusteringCoefficient = c(0.94545, 0.91209, 0.85, 0.89394, 0.9697, 0.9, 0.83088, 0.78788, 0.81905, 0.83041, 0.8366, 0.88235, 0.83684, 0.80952, 0.76285, 0.76285, 0.76285, 0.81871, 0.91176, 0.86667, 0.80952, 0.86813, 0.76285, 0.91667)
)
data
rownames(data)=data$node_name
# 使用sapply()按列选择top10基因名称
#top_genes <- apply(data[, -1],2, function(x) names(head(sort(x, decreasing = TRUE), 10)))
 
apply(data[, -1],2, function(x) rownames(data)[which.max(x)] )
# 输出每列的top10基因名称
print(top_genes)



# 使用apply()按列选择top10基因名称
top_genes <- apply(data[, -1], 2, function(x) names(head(sort(x, decreasing = TRUE), 10)))

# 输出每列的top10基因名称
print(top_genes)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值