抽屉原理,鸽巢原理

本文介绍了鸽巢原理及其在数论问题中的应用,通过具体的例子展示如何证明在特定条件下一定存在某种特定组合。此外,还讨论了Ramsey定理,该定理涉及到社交网络中的认识关系,以及在图论中的证明。通过实例解释了如何在6个人中找到相互认识或不认识的三人。最后,文章提及了鸽巢原理和Ramsey定理在解决实际问题中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一部分:鸽巢原理

别名:鸽笼原理。狄利克雷抽屉原理。

最简单的一种形式:有m+1m+1m+1只鸽子,mmm个笼子,那么至少有一个笼子有至少两只鸽子。当然,换个角度来说:有m−1m-1m1只鸽子,mmm个笼子,那么至少有一个笼子是空的。

luogu

初级加强:有mmm个笼子,k∗m+1k*m+1km+1只鸽子,那么至少有一个笼子有至少k+1k+1k+1只鸽子。

高级加强:令

  • a1,a2,a3...ama_1,a_2,a_3...a_ma1,a2,a3...am

  • 为正整数。

  • ififif 我们将

  • a1+a2+a3+...+an−n+1a_1+a_2+a_3+...+a_n-n+1a1+a2+a3+...+ann+1

  • 个鸽子放入nnn个笼子里,thenthenthen

||第一个笼子至少有a1a_1a1只鸽子||第二个笼子至少有a2a_2a2只鸽子||第三个笼子至少有a3a_3a3只鸽子||…||第mmm个笼子至少有ama_mam只鸽子


鸽巢原理的应用

一位洛谷oieroieroier要用121212周的时间准备  CTSC  ~~CTSC~~  CTSC  ,为了练习,他每天至少要刷一题,因为题目有难度,他每星期刷题无法超过131313题。请你证明:存在连续的若干天期间,这位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShineEternal

觉得好就给点鼓励呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值