【图像超分】论文精读:Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

本文详细介绍了Real-ESRGAN,一种使用纯合成数据训练真实世界盲超分辨率的方法。研究扩展了经典退化模型,采用高阶退化过程来模拟复杂的现实世界退化,包括振铃和超调伪影的模拟。通过光谱归一化的U-Net鉴别器增强了鉴别器的能力,确保模型在处理真实世界图像时具备更好的视觉性能。实验表明,Real-ESRGAN在多种真实数据集上超越了现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值