【高效科研】Pytorch训练的模型评估测试集,实现与论文中的PSNR/SSIM一致的计算方法!附各主流方法的Bicubic结果对比!分析区别以及原因!得到终极计算方法!

本文探讨了PyTorch训练模型在评估测试集时如何实现与论文中相同的PSNR/SSIM计算方法。通过Matlab处理测试集图像,然后使用Python读取.mat文件,确保指标准确性。对比了不同方法下的Bicubic结果,并提供了各论文中的Bicubic指标对比,最后提出了达到最优计算方法的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)


前言

之前,我们分析了Python计算的PSNR/SSIM与Matlab计算的PSNR/SSIM的差别,其主要原因来自imresize的不同。

文章链接:【深度思考】为什么评价指标PSNR、SSIM和论文中的不一样?一文搞清超分辨率主流benchmarks测试集Set5等的PSNR、SSIM的计算方式以及python与matlab的imresize差别

那么,本文将在不添加额外代码的情况下,实现论文中PSNR/SSIM的计算。

Pytorch代码+Python计算指标+Matlab处理测试集!

Matlab处理benchmarks主流测试集

根据前言所述,指标的差距来自python和matlab的imresize不同。之前我们的做法是用python实现matlab中的imresize,直接读取测试集的图像。虽然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值