【图像去噪】论文精读:MemNet: A Persistent Memory Network for Image Restoration

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)


前言

论文题目:MemNet: A Persistent Memory Network for Image Restoration —— MemNet:用于图像恢复的持久记忆网络

论文地址:MemNet: A Persistent Memory Network for Image Restoration

论文源码:https://github.com/tyshiwo/MemNet

ICCV 2017!延长记忆网络MemNet!DRRN相同团队出品!

Abstract

最近,非常深的卷积神经网络 (CNN) 在图像恢复中引起了相当大的关注。然而,随着深度的增长,这些非常深的模型很少实现长期依赖问题,这导致先验状态/层对后续状态几乎没有影响。受人类思

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值