毕业设计-微博评论文本情感分析,SVM+朴素贝叶斯+AdaBoost,含完整项目文档

该项目是本科毕业设计,运用AdaBoost算法进行微博评论的情感分析。首先通过微博API获取数据,然后使用SVM进行初步分类,接着利用朴素贝叶斯进行情感分析,最后通过AdaBoost提升分类效果,包括二分类和多分类的AdaBoost方法。代码和文档已开源,可供学习参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于AdaBoost算法的情感分析研究

完整代码及文档下载地址:毕业设计-微博评论文本情感分析

此项目为本科毕业设计项目,大家借鉴一下思路就好

大学时没有好好学算法,毕竟那些树、图实在提不起兴趣,好在毕业设计选择了个机器学习算法,整了个还算是有点意思的项目,至少弥补了大学的一点点的遗憾。现在将项目开源出来,虽然感觉还是写得没有达到自己的预期,大部分也是参考别人的,有兴趣的可以下载看看吧。

文本分类基本流程

运行环境

[anaconda: 3.5+]https://www.anaconda.com/

本文项目流程

一、 使用微博应用获取微博文本
二、 SVM初步分类(svm_temp.py)
三、 利用贝叶斯定理进行情感分析
四、 利用AdaBoost加强分类器

一、获取微博文本

二、SVM初步分类

三、使用朴素贝叶斯分类

四、AdaBoost

4.1 二分类AdaBoost

4.2 多分类AdaBoost

4.2.1 AdaBoost.SAMME

4.2.2 AdaBoost.SAMME.R

完整代码及文档下载地址:毕业设计-微博评论文本情感分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python代码大全

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值