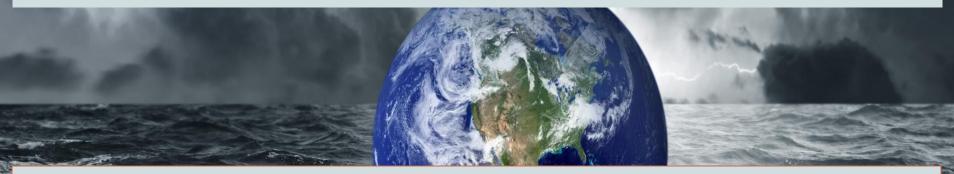
The changing profile of risks to health

MORLD SCIENCE FORIM

Budapest 2024

The science and policy interface at the time of global transformations


- Professor Anthony Clayton, CD
- University of the West Indies
- anthony.clayton@uwimona.edu.jm

Future challenges:

Parameters

- **1. Demography:** by 2100 will be 2.5–5.3bn more people (up from 8.2bn), but most parts of the world then in sharp population decline.
- 2. Older: median age now 29; by 2050 will be 41.
- **3. Climate change:** By 2050 2C hotter than pre-industrial level, over 50% population in water-stressed areas. By 2100 2-4C hotter; large-scale climate-driven migration.
- **4. More urban:** demographic growth, internal migration, relocation from flood areas could add 3.9bn to urban populations, need ~200 more cities with >20m people.

Key directions of change

- 1. Increase efficiency (food, energy, water, waste, transport etc.)
- 2. Adjust to ageing society (e.g. biomedical science, robotics)
- **3. Transition to low-carbon** energy supplies.
- 4. Find new solutions for urban living (construction, work, transport etc.)

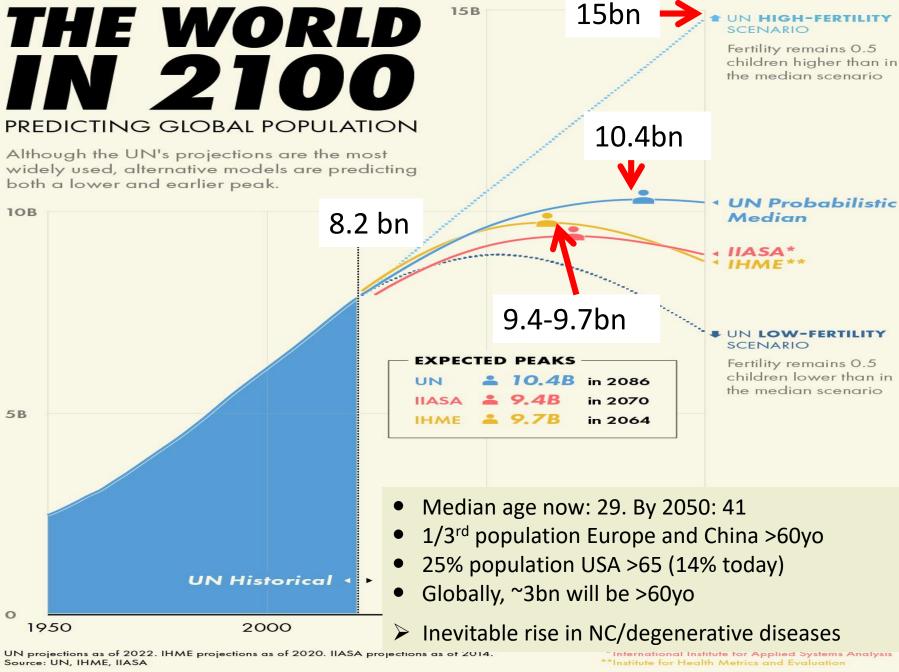
Progress to date:

Life expectancy for a Roman Citizen in 100BC was ~20-25 years.

Over next 2,000 years (to 1900) life expectancy rose to 30 years.

Rate of gain: <1 extra day of life per year.

Life expectancy doubled between 1900 and 2000.


Rate of gain: 110 days of life per year.

So rate of gain increased: >100-fold.

Causes:

- Improvements in water and sanitation
- Improvements in agriculture and food storage
- Increases in productivity (could support larger population)
- In recent years- advances in medicine (immunization, antibiotics)

Greatest impact: decreased infant mortality

VISUAL Capitalist

Today, NCDs cause ~74% of all deaths globally = 41m deaths/year.

Projected to rise to 86% of all deaths by 2050

Today, over 80% from four groups of diseases:

- Cardiovascular diseases = 17.9m/year
- Cancers = 9.0m/year
- Respiratory diseases = 3.9m
- Diabetes = 1.6m

NCD treatment is long-term, high-cost.

Average health spending in rich countries: 9% GDP; 17.9% in USA.

Over 80% of all NCD deaths in low/middle-income countries.

Source: WHO, The Economist, P. Clayton

Risk factors

1) Population: ageing

Intervention options:

2) Behavioral risk factors

Unhealthy lifestyles, bad diets, physical inactivity, tobacco, alcohol.

- Tobacco: 7.2 million deaths/year
- Excess sodium: 4.1 million deaths/year
- Alcohol: total 3.3m, about half due to NCDs (mainly cancer)
- Lack of exercise: 1.6 million deaths/year
- 3) Metabolic risk factors
- Raised blood pressure
- Overweight/obesity
- Hyperglycemia (high blood glucose levels)
- Hyperlipidemia (high levels of fat in the blood)
- 4) Socioeconomic impact.
- Cost of treatment reduces people with insufficient resources to poverty.
- But greater urban concentration could reduce per unit cost delivery: ~55% of population now urban; 68% by 2050.

Prevention

Smoking

UK banned smoking in public places and workplaces in July 2007.

Result: >20% decline in cardiovascular diseases in first 10 years.

"Greatest UK public health achievement of the 21st century".

Sodium

Finland mandated salt reduction esp. in processed foods, starting 1970. By 2009, average sodium intake down by 40%, significant reduction in average blood pressure levels (>10 mm Hg reduction in diastolic blood pressure) and 80% drop in deaths due to stroke.

Technology

Long term: Genome editing to target and correct e.g. some forms of cancer by modifying T cells to prevent them from being switched off by tumours.

Medium term: Al/robotics

Examples:

Google Health algorithm now as good as medical professionals at screening mammograms and identifying breast cancer, better at avoiding false positives.

