机器学习笔记 - 全卷积网络(FCN)

本文介绍了计算机视觉任务的四种类型,并深入探讨了全卷积网络(FCN)在图像分割中的作用。FCN作为深度学习在图像分割领域的里程碑,通过卷积、上采样和跳跃结构实现像素级别的预测。与传统CNN不同,FCN能处理任意尺寸输入,保持空间信息,解决了语义分割问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机视觉任务大致分为以下四种类型

1. Classification(分类)对图像内的对象进行分类(识别对象类)。

2. Object Detection(目标检测)使用包围盒的对象对图像内的对象进行分类和检测。 这意味着我们还需要知道每个对象的类,位置和大小。

3. Semantic Segmentation(语义分割)为图像中的每个像素分类对象类别。 这意味着每个像素都有一个标签。

4. Instance Segmentation (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值