机器学习笔记 - Transformer/Attention论文解读

本文深入探讨Transformer模型,完全基于注意力机制,抛弃递归和卷积。模型在机器翻译任务中表现出色,提高BLEU分数,且训练时间显著减少。Transformer架构包含Encoder和Decoder,通过多头注意力机制捕获全局依赖。实验结果显示,Transformer在WMT2014英德、英法翻译任务上刷新了SOTA记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、摘要

        主要的序列转换模型基于复杂的循环或卷积神经网络,包括编码器和解码器。性能最好的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单网络架构Transformer,它完全基于注意力机制,完全摒弃了递归和卷积。对两个机器翻译任务的实验表明,这些模型在质量上更优越,同时更可并行化,并且需要的训练时间显着减少。我们的模型在WMT2014英德翻译任务上实现了28.4 BLEU分数,比现有的最佳结果(包括集成)提高了2 BLEU分数以上。在WMT 2014英法翻译任务上,我们的模型在8个GPU上训练3.5天后,建立了一个新的单模型state-of-the-art BLEU得分41.8,这只是最好的训练成本的一小部分。文献中的模型。我们表明,Transformer通过成功地将其应用于具有大量和有限训练数据的英语选区解析,可以很好地推广到其他任务。

        关于BLEU分数的介绍,可以查看下面的链接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值