使用 Range-Encoded Bit-Slice Indexes 解决 Bitmap 范围查询和高基维问题

本文探讨了如何使用Range-Encoded Bit-Slice Indexes解决Bitmap索引在处理范围查询和高基维问题上的挑战。通过介绍Bitmap编码、等值编码和范围编码的概念,解释了如何利用Range-Encoded Bit-Slice Indexes在不牺牲效率的同时,实现高效的数据过滤和范围查询,特别适用于基数极高且需要精确查询的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

这篇文章中描述的所有概念都是基于过去几十年里一些非常聪明的人所做的研究。我只是从更高层次上描述这些事情,在阅读下面内容之前建议您先阅读更多关于 Bit-sliced IndexesRange-Encoding的内容。

1. Bitmap Encoding

首先,假设我们想要对动物王国的每个动物进行分类,这样我们就可以根据它们的特征轻松有效地探索各种物种。因为我们在这讨论的是 Bitmap,所以假设示例数据集如下所示:

在这里插入图片描述

每一行表示不同的特征:脊椎动物(Vertebrate)、无脊椎动物(Invertebrate)、长翅膀(Winged)、有壳(Has A S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值