【RT-DETR有效改进】大核注意力 | LSKAttention助力极限涨点

本文介绍了如何将LSKAttention大核注意力机制应用于RT-DETR,以提升目标检测的效率和准确性。LSKAttention通过分解2D卷积核为1D卷积核,减少计算复杂性和内存占用。文章提供了详细的修改教程,包括修改ResNet主干网络和即插即用的方案,以及适用于ResNet18、50和HGNetV2的yaml配置文件。实验证明,LSKAttention能有效提高RT-DETR的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍 

在这篇文章中,我们将讲解如何将LSKAttention大核注意力机制应用于RT-DETR,以实现显著的性能提升。首先,我们介绍LSKAttention机制的基本原理,它主要通过将深度卷积层的2D卷积核分解为水平和垂直1D卷积核,减少了计算复杂性和内存占用。接着,我们介绍将这一机制整合到RT-DETR的方法,以及它如何帮助提高处理大型数据集和复杂视觉任务的效率和准确性。本文改进是基于ResNet18、ResNet34、ResNet50、ResNet101,文章中均以提供,本专栏的改进内容全网独一份深度改进RT-DETR非那种无效Neck部分改进,同时本文的改进也支持主干上的即插即用,本文内容也支持PP-HGNetV2版本的修改。

专栏目录: RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR    

目录

 一、本文介绍 

二、LSKAttention的机制原理 

三、LSKAttention的代码

四、手把手教你将LSKAttention添加到你的网络结构中

4.1 修改Basicclock/Bottleneck的教程

4.1.1 修改一

4.1.2 修改二 

4.2 修改主干上即插即用的教程

4.2.1 修改一(如果修改了4.1教程此步无需修改)

4.2.2 修改二 

4.2.3 修改三 

4.2.4 修改四 

五、LSKAttention的yaml文件

5.1 替换ResNet的yaml文件1(ResNet18版本)

5.2 替换ResNet的yaml文件1(ResNet50版本)

5.3 即插即用的yaml文件(HGNetV2版本)

六、成功运行记录 

6.1 ResNet18运行成功记录截图

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值