YOLOv5改进 | 图像去噪篇 | 一种基于注意力机制的图像去噪网络ADNet融合YOLOv5(全网独家首发)

本文详细介绍了如何将注意力引导的去噪卷积神经网络(ADNet)应用于YOLOv5,以提升图像去噪效果。ADNet通过注意力机制强化性能,专注于相关特征并抑制噪声。文章包括ADNet网络结构解析、核心代码展示及在YOLOv5中的集成步骤,提供yaml配置文件和训练截图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是Attention-guided Denoising Convolutional Neural Network (ADNet) 是一种专为图像去噪设计的深度学习模型,旨在解决合成噪声图像、真实噪声图像和盲去噪的挑战。它通过注意力机制提升性能,聚焦于相关特征,抑制无关噪声。其主要由四个模块组稀疏块(Sparse Block, SB)特征增强块(Feature Enhancement Block, FEB)注意力块(Attention Block, AB重建块(Reconstruction Block, RB)本文内容为包含代码加解释加添加教程以及运行记录!

欢迎大家订阅我的专栏一起学习YOLO!  

目录

一、本文介绍

二、ADNet网络介绍

三、ADNet核心代码

四、添加方式

4.1 ADNet添加步骤

4.1.1 修改一

4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 ADNet的yaml文件和训练截图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值