YOLOv9改进策略 | 图像去雾 | 利用图像去雾网络AOD-PONO-Net网络增改进图像物体检测(全网独家首发)

本文介绍了一种利用AODNet图像去雾网络和PONO机制增强YOLOv9的目标检测方法。通过端到端的模型设计,直接从雾天图像生成清晰图像,提高检测性能。详细教程包括代码修改和训练过程记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍 

本文给大家带来的改进机制是利用AODNet图像去雾网络结合PONO机制实现二次增强,我将该网络结合YOLOv5针对图像进行去雾检测(也适用于一些模糊场景,图片不清晰的检测)同时本文的内容不影响其它的模块改进可以作为工作量凑近大家的论文里,非常的适用,图像去雾检测为群友最近提出的需要的改进在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。  

👑欢迎大家订阅我的专栏一起学习YOLO👑 

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

 一、本文介绍 

二、原理介绍 

三、核心代码

四、添加教程

 4.1 修改一

4.2 修改二 

4.3 修改三 

五、AODNet-PONO-Net的yaml文件和运行记录

5.1 AODNet-PONO-Net的yaml文件

5.2 训练过程截图 

五、本文总结


二、原理介绍 

官方论文地址: 官方论文地址点击即可跳转

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值