YOLOv10改进 | 主干/Backbone篇 | SwinTransformer替换Backbone(附代码 + 详细修改步骤 +原理介绍)

 一、本文介绍

本文给大家带来的改进机制是利用Swin Transformer替换YOLOv10中的骨干网络其是一个开创性的视觉变换器模型,它通过使用位移窗口来构建分层的特征图,有效地适应了计算机视觉任务。与传统的变换器模型不同,Swin Transformer的自注意力计算仅限于局部窗口内,使得计算复杂度与图像大小成线性关系,而非二次方。这种设计不仅提高了模型的效率,还保持了强大的特征提取能力。Swin Transformer的创新在于其能够在不同层次上捕捉图像的细节和全局信息,使其成为各种视觉任务的强大通用骨干网络。亲测在小目标检测和大尺度目标检测的数据集上都有涨点效果

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、Swin Transformer原理

2.1 Swin Transformer的基本原理

2.2 层次化特征映射

2.3 局部自注意力计算

2.4 移动窗口自注意力

2.5 移动窗口分区

三、 Swin Transformer的完整代码

 四、手把手教你添加Swin Transformer网络结构

修改一

修改二

修改三 

修改四

修改五 

修改六 

修改七

修改八

五、Swin Transformer的yaml文件

### 改进YOLOv8主干网络的方法 为了使YOLOv8更加轻量化并提升检测精度,可以采用来自RT-DETR的PPHGNetV2作为新的特征提取器[^1]。这种方法不仅能够增强模型的表现力,还能减少计算资源的需求。 #### 替换原有主干网络 原有的YOLOv8主干网络被PPHGNetV2所替代。PPHGNetV2是一种基于Transformer架构设计而成的新颖骨干网路,它具有更强的数据表达能力和更低的参数复杂度。通过这种替换操作,可以在不显著增加额外开销的情况下获得更好的性能表现[^2]。 #### 调整超参数设置 当引入新类型的主干之后,可能需要重新调整一些训练过程中的超参数配置,比如学习率、批量大小等。这些改变有助于让整个系统更好地适应新型号带来的变化,并最终体现在更高的mAP得分上[^3]。 #### 训练与验证流程 完成上述修改后,按照常规方式准备数据集并对改进后的YOLOv8进行充分训练。期间应密切关注损失函数的变化趋势以及各类评估指标的结果反馈。经过多轮迭代优化直至收敛稳定为止。最后,在测试集上面检验最终版模型的实际效能是否达到了预期目标——即实现了更高精度的同时也保持了良好的运行效率。 ```python import torch from yolov8 import YOLOv8 from pphgnet_v2 import PPHGNetV2 def replace_backbone(yolo_model_path, new_backbone=PPHGNetV2()): # 加载原始YOLOv8模型权重 yolo = YOLOv8() checkpoint = torch.load(yolo_model_path) yolo.load_state_dict(checkpoint['model']) # 将原主干部分替换成PPHGNetV2 yolo.backbone = new_backbone return yolo # 使用示例代码片段 if __name__ == "__main__": improved_yolov8 = replace_backbone('path_to_original_weights.pth') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值