YOLOv11改进 | 融合改进篇 | BiFPN+ MobileNetv4(教你如何融合改进机制,可替换专栏20+种主干)

一、本文介绍

本文给大家带来的最新改进机制是融合改进,最近有好几个读者和我反应单独的机制都能够涨点,一融合起来就掉点,这是大家不了解其中的原理(这也是为什么我每一个机制都给大家讲解一下原理,大家要明白其中的每个单独的机制涨点原理然后才能够更好的融合,有一些结构是有冲突的),不知道哪些模块和那些模块融合起来才能够涨点。所以本文给大家带来的改进机制是融合 BiFPN+ MobileNetv4的融合改进机制,同时本文的MobileNetV4可以替换本专栏的其它任何主干网络机制.。

训练信息:YOLO11-BiFPN-MobileNetV4 summary: 436 layers, 1,999,494 parameters, 1,999,478 gradients, 5.1 GFLOPs
基础版本:319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs

专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

一、本文介绍

二、MobileNetv4基本原理

三、BiFPN原理

2.1 BiFPN的基本原理

2.2 双向特征融合

2.3 加权融合机制

2.4 结构优化

四、手把手教你修改BiFPN

BiFPN核心代码

### YOLOv11改进点与优化 YOLO (You Only Look Once) 是一种实时目标检测算法,在其多个版本迭代过程中不断引入新的技术来提高性能和效率。尽管目前尚未有官方发布的 YOLOv11 版本[^1],但可以推测未来可能的改进方向基于现有版本中的常见优化策略。 #### 1. **网络架构优化** - 更高效的卷积神经网络结构可能会被采用,例如 MobileNet 或 GhostNet,这些轻量化模型能够在保持较高精度的同时减少计算量[^2]。 - 可能会进一步探索注意力机制(Attention Mechanism),如 SE-Net 和 CBAM,通过动态调整特征图权重增强重要区域的信息提取能力[^3]。 #### 2. **数据增强与预处理** - 数据增强方法将进一步多样化,包括但不限于 MixUp、CutMix 和 Mosaic 等技术,用于增加训练样本多样性并缓解过拟合问题[^4]。 - 预处理阶段可能会加入自适应图像缩放算法,使得不同尺寸输入图片能够更高效地适配到统一框架下进行推理[^5]。 #### 3. **损失函数设计** - 对于边界框回归部分,IoU 类型损失函数(GIoU Loss, DIoU Loss, CIoU Loss)将继续作为主流选择之一,因为它们相比传统 MSE 损失更能反映实际几何关系[^6]。 - 分类分支则可能尝试 Focal Loss 来解决类别不平衡问题,尤其当场景中存在大量背景噪声时效果显著[^7]。 #### 4. **后处理加速** - NMS(Non-Maximum Suppression)环节有望得到简化或者替代方案,比如 Soft-NMS 或 Diou-NMS,从而降低冗余预测框数量同时保留更多高质量候选对象[^8]。 ```python def diou_nms(boxes, scores, iou_threshold=0.5): """ 实现Diou形式的NMS操作 参数: boxes: 边界框列表 [(x_min,y_min,x_max,y_max)] scores: 各边界框对应的置信度分数 iou_threshold: IoU阈值 返回: keep_indices: 被保留下来的索引集合 """ areas = (boxes[:, 2]-boxes[:, 0])*(boxes[:, 3]-boxes[:, 1]) order = torch.argsort(scores)[::-1] keep = [] while len(order)>0: idx_self = order[0] idx_other = order[1:] keep.append(idx_self) xx1 = torch.max(boxes[idx_self][0], boxes[idx_other][:, 0]) yy1 = torch.max(boxes[idx_self][1], boxes[idx_other][:, 1]) xx2 = torch.min(boxes[idx_self][2], boxes[idx_other][:, 2]) yy2 = torch.min(boxes[idx_self][3], boxes[idx_other][:, 3]) w = torch.clamp(xx2-xx1,min=0) h = torch.clamp(yy2-yy1,min=0) inter = w*h iou = inter / ((areas[idx_self]+areas[idx_other]-inter)+1e-9) # 计算中心距离平方项 center_dist_sqrd = pow((boxes[idx_self][0]+boxes[idx_self][2])/2-(boxes[idx_other][:,0]+boxes[idx_other][:,2])/2,2)\ +pow((boxes[idx_self][1]+boxes[idx_self][3])/2-(boxes[idx_other][:,1]+boxes[idx_other][:,3])/2,2) enclose_left_top_x=torch.minimum(boxes[idx_self][0], boxes[idx_other][:, 0]) enclose_right_bottom_x=torch.maximum(boxes[idx_self][2], boxes[idx_other][:, 2]) enclose_left_top_y=torch.minimum(boxes[idx_self][1], boxes[idx_other][:, 1]) enclose_right_bottom_y=torch.maximum(boxes[idx_self][3], boxes[idx_other][:, 3]) diagonal_distance_sqrd=pow(enclose_right_bottom_x-enclose_left_top_x,2)+pow(enclose_right_bottom_y-enclose_left_top_y,2) diou=iou-center_dist_sqrd/diagonal_distance_sqrd indices_to_keep=(diou<=iou_threshold).nonzero().squeeze() if isinstance(indices_to_keep,int):break order=order[indices_to_keep+1] return keep ``` #### 5. **硬件友好性考虑** - 新版或许会对特定硬件平台做针对性优化,例如 TensorRT 上部署专用插件层以充分利用 GPU 并行计算优势;或者是针对 ARM 架构设备开发专门指令集支持,让移动端应用更加流畅[^9]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值