【RT-DETR有效改进】最新双时相特征聚合模块BFAM助力RT-DETR有效涨点(二次创新RepC3全网独家首发)

一、本文介绍

本文给大家带来的最新改进机制是2024年的双时相特征聚合模块BFAM,其中双时相特征聚合模块(BFAM)基于空间-时间特征聚合多种感受野的特征,同时保留了细粒度信息和纹理信息,增强了变化检测的准确性,我将其用于二次创新yolov11中的C3k2模块,目的是为了提高了图像变化检测的准确性,解决噪声和信息丢失的问题,本文的内容为独家创新,下图为BFAM网络的结构图

欢迎大家订阅我的专栏一起学习RT-DETR,购买专栏读者联系读者入群获取进阶项目文件!  

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR


目录

一、本文介绍

二、原理介绍

三、核心代码 

四、添加教程

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、正式训练

5.1 yaml文件1

5.2 yaml文件2 

### RT-DETR改进方法 为了提升实时目标检测的效果,RT-DETR引入了多种创新机制来优化模型性能。具体来说: #### 双动态令牌混合器(D-Mixer) 双动态令牌混合器是一种新颖的设计,旨在更有效地融合全局和局部信息。通过这种方式,模型能够在更大范围内捕捉特征,并增强其归纳偏置能力[^3]。 这种设计允许模型根据输入数据自适应调整关注区域,从而提高对复杂场景的理解能力和鲁棒性。相比于传统的方法,这种方法可以显著增加有效感受野(ERF),进而改善整体检测精度。 ```python class D_Mixer(nn.Module): def __init__(self, config): super(D_Mixer, self).__init__() # 定义用于处理全局和局部信息的组件 def forward(self, x): global_info = self.global_mechanism(x) local_info = self.local_mechanism(x) mixed_output = torch.cat((global_info, local_info), dim=1) return mixed_output ``` ### 最新研究进展 最新的研究表明,采用双动态令牌混合器后,RT-DETR系列模型在多个公开测试集上的表现均有明显进步。特别是在COCO val2017数据集中,不同版本的RT-DETR取得了如下成绩: - **RT-DETR-L**: 实现了53.0%的AP以及114 FPS的速度; - **RT-DETR-X**: 达到了更高的54.8% AP 和 74 FPS 的速度; - **RT-DETR-R50**: 提供了53.1% AP 和 108 FPS 的平衡选项; - **RT-DETR-R101**: 则进一步提升了至54.3% AP 和同样74 FPS 的速度[^1]。 这些结果显示,在不牺牲速度的前提下,RT-DETR能够提供更加精确的目标检测结果,成为该领域内新的标杆之一。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值