支持向量机SVM核函数分析

本文深入探讨了支持向量机SVM中的核函数,解释了核函数的作用和重要性,尤其是如何通过核函数将数据从低维线性不可分映射到高维实现可分。介绍了两种核函数——线性核函数和高斯核函数(RBF),并分析了它们的特性。此外,还讨论了核函数的有效性判定,包括核函数矩阵的对称性和半正定性,以及Mercer定理在验证核函数有效性的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核函数描述和分析

考虑在”回归和梯度下降 中“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点。那么首先需要将特征x扩展到三维 ,然后寻找特征和结果之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作

在这个例子中我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征。这样,我们需要将前面公式中的内积从,映射到。至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的(为了更好地拟合)是其中一个原因,另外的一个重要原因是样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了。所以,将核函数形式化定义。如果原始特征内积是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值