统计XML文件内标签的种类和其数量及将xml格式转换为yolov5所需的txt格式

本文介绍了如何使用Python脚本统计XML文件中标签的种类和数量,处理XML文件为空引发的错误,并演示了将XML转换为YOLOv5所需的txt格式的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、统计XML文件内标签的种类和其数量

对于自己标注的数据集,需在标注完成后需要对标注好的XML文件校验,下面是代码,只需将SrcDir换成需要统计的xml的文件夹即可。

import os
from tqdm import tqdm
import xml.dom.minidom


def ReadXml(FilePath):
    if os.path.exists(FilePath) is False:
        return None
    dom = xml.dom.minidom.parse(FilePath)
    root_ = dom.documentElement
    object_ = root_.getElementsByTagName('object')
    info = []
    for object_1 in object_:
        name = object_1.getElementsByTagName("name")[0].firstChild.data
        bndbox = object_1.getElementsByTagName("bndbox")[0]
        xmin = int(bndbox.getElementsByTagName("xmin")[0].firstChild.data)
        ymin = int(bndbox.getElementsByTagName("ymin")[0].firstChild.data)
        xmax = int(bndbox.getElementsByTagName("xmax")[0].firstChild.data)
        ymax = int(bndbox.getElementsByTagName("ymax")[0].firstChild.data)
        info.append([xmin, ymin, xmax, ymax, name])
    return info


def CountLabelKind(Path):
    LabelDict = {}
    print("Star to count label kinds....")
    for root, dirs, files in os.walk(Path):
        for file in tqdm(files):
            if file[-1] == 'l':
                Infos = ReadXml(root + "\\" + file)
                for Info in Infos:
                    if Info[-1] not in LabelDict.keys():
                        LabelDict[Info[-1]] = 1
                    else:
                        LabelDict[Info[-1]] += 1

    return dict(sorted(LabelDict.items(), key=lambda x: x[0]))


if __name__ == '__main__':

    SrcDir = r"D:\program\数据集\自标数据集(fall-nofall)\自标数据集(fall-nofall)\标注1~1000(1)"

    LabelDict = CountLabelKind(SrcDir)
    KeyDict = sorted(LabelDict)
    print("%d kind labels and %d labels in total:" % (len(KeyDict), sum(LabelDict.values())))
    print(KeyDict)
    print("Label Name and it's number:")
    for key in KeyDict:
        print("%s\t: %d" % (key, LabelDict[key]))

2、运行后报错:xml.parsers.expat.ExpatError: no element found: line 1, column 0

这是因为我的数据集中有XML文件为空

解决办法:最简单就是查看你文件夹下的XML文件的大小是否为0kb,若为0kb,直接删除。

最终统计效果如下:

3、将xml格式转换为yolov5所需的txt格式

先给大家看我的目录:

注意:

①此处的xml—txt.py文件是放在datasets文件夹下的(代码中的绝对路径)。
②imges文件夹中的train目录下的每一张图片都要有相应的xml文件,若无,则手动删除该jpg文件。

train1是存放xml文件的文件夹,train是存放txt文件的文件夹。

文件代码:

import xml.etree.ElementTree as ET

import pickle
import os
from os import listdir, getcwd
from os.path import join
import glob

classes = ['fall', 'no  fall', 'no fall', 'nofall']


def convert(size, box):
    dw = 1.0 / size[0]
    dh = 1.0 / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_name):
    in_file = open('./labels/train1/' + image_name[:-3] + 'xml')  # xml文件路径
    out_file = open('./labels/train/' + image_name[:-3] + 'txt', 'w')  # 转换后的txt文件存放路径
    f = open('./labels/train1/' + image_name[:-3] + 'xml')
    xml_text = f.read()
    root = ET.fromstring(xml_text)
    f.close()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            print(cls)
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()

if __name__ == '__main__':

    for image_path in glob.glob("./images/train/*.jpg"):  # 每一张图片都对应一个xml文件这里写xml对应的图片的路径
        image_name = image_path.split('\\')[-1]
        convert_annotation(image_name)

转换后的txt文件为:

我的标注标签有四个,分别对应下面这四个数字。

接下来又是漫长且易秃的环境配置之路了。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值