目录
一、目标设定
利用 SKlearn 库实现 Kaggle 房价预测,帮助用户掌握机器学习在实际业务中的应用。
二、关键知识点梳理
-
房价数据的获取与预处理
-
数据清洗:去除缺失值、异常值。
-
特征工程:创建新特征,如房产年龄。
-
-
机器学习模型选择与评估
-
线性回归:简单易用,适合入门。
-
随机森林:处理非线性关系,减少过拟合。
-
梯度提升树:提高预测精度。
-
交叉验证:评估模型性能。
-
均方误差(MSE):衡量预测误差。
-
三、案例讲解与实战操作
-
数据集的准备与加载
-
从 Kaggle 官方网站下载房价数据集,并加载到 Python 环境中。
import pandas as pd # 加载数据集 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv')
-
-
数据预处理
-
处理缺失值、异常值,进行特征工程。
# 处理缺失值 train_data.fillna(train_data.mean(), inplace=True) # 特征工程:创建房产年龄特征 train_data['HouseAge'] = 2023 - train_data['YearBuilt']
-
-
特征选择与工程
-
筛选对房价有显著影响的特征,如房屋面积、卧室数量等。
# 筛选特征 features = ['OverallQual', 'GrLivArea', 'GarageCars', 'GarageArea', 'HouseAge'] X = train_data[features] y = train_data['SalePrice']
-
-
模型训练与优化
-
使用线性回归、随机森林等模型进行训练,并通过交叉验证评估性能。
from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error # 数据集划分 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 模型训练 model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) # 模型评估 predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print(f"均方误差: {mse}")
-
-
结果预测与提交
# 结果预测 test_predictions = model.predict(test_data[features]) # 保存结果 submission = pd.DataFrame({'Id': test_data['Id'], 'SalePrice': test_predictions}) submission.to_csv('submission.csv', index=False)
-
使用训练好的模型对测试集进行预测,并将结果保存为 CSV 文件,提交至 Kaggle 官方网站。