场景化应用实战系列一:Kaggle 房价预测

目录

场景化应用实战系列一:Kaggle 房价预测

一、目标设定

二、关键知识点梳理

三、案例讲解与实战操作


一、目标设定

利用 SKlearn 库实现 Kaggle 房价预测,帮助用户掌握机器学习在实际业务中的应用。

二、关键知识点梳理

  1. 房价数据的获取与预处理

    • 数据清洗:去除缺失值、异常值。

    • 特征工程:创建新特征,如房产年龄。

  2. 机器学习模型选择与评估

    • 线性回归:简单易用,适合入门。

    • 随机森林:处理非线性关系,减少过拟合。

    • 梯度提升树:提高预测精度。

    • 交叉验证:评估模型性能。

    • 均方误差(MSE):衡量预测误差。

三、案例讲解与实战操作

  1. 数据集的准备与加载

    • 从 Kaggle 官方网站下载房价数据集,并加载到 Python 环境中。

    import pandas as pd
    # 加载数据集
    train_data = pd.read_csv('train.csv')
    test_data = pd.read_csv('test.csv')
  2. 数据预处理

    • 处理缺失值、异常值,进行特征工程。

    # 处理缺失值
    train_data.fillna(train_data.mean(), inplace=True)
    # 特征工程:创建房产年龄特征
    train_data['HouseAge'] = 2023 - train_data['YearBuilt']
  3. 特征选择与工程

    • 筛选对房价有显著影响的特征,如房屋面积、卧室数量等。

    # 筛选特征
    features = ['OverallQual', 'GrLivArea', 'GarageCars', 'GarageArea', 'HouseAge']
    X = train_data[features]
    y = train_data['SalePrice']
  4. 模型训练与优化

    • 使用线性回归、随机森林等模型进行训练,并通过交叉验证评估性能。

    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_squared_error
    
    # 数据集划分
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    # 模型训练
    model = RandomForestRegressor(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)
    # 模型评估
    predictions = model.predict(X_test)
    mse = mean_squared_error(y_test, predictions)
    print(f"均方误差: {mse}")
  5. 结果预测与提交

    # 结果预测
    test_predictions = model.predict(test_data[features])
    # 保存结果
    submission = pd.DataFrame({'Id': test_data['Id'], 'SalePrice': test_predictions})
    submission.to_csv('submission.csv', index=False)
  6. 使用训练好的模型对测试集进行预测,并将结果保存为 CSV 文件,提交至 Kaggle 官方网站。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值