目录
一、最优化问题与数学预备知识
(一)最优化问题概述
最优化问题是一类寻找函数最小值或最大值的问题,在人工智能领域,尤其是在机器学习和深度学习中,最优化方法用于训练模型,通过最小化损失函数来提高模型的性能。
1. 最优化问题的分类
-
无约束最优化:寻找函数的最小值或最大值,没有任何限制条件。
-
约束最优化:在满足一定约束条件下,寻找函数的最小值或最大值。
2. 最优化问题的求解方法
-
解析法:通过求导等数学手段直接求解最优化问题。
-
数值法:使用迭代算法近似求解最优化问题,如梯度下降法、牛顿法等。
(二)数学预备知识
1. 函数与导数
-
函数:描述变量之间的依赖关系。
-
导数:衡量函数在某一点处的变化率。对于函数 f(x),其在点 x 处的导数为:
-
梯度:多变量函数的导数,是一个向量,其分量是函数对各个变量的偏导数。
2. 泰勒展开
泰勒展开用于将函数近似为多项式,便于分析和计算。对于函数 f(x) 在点 a 处的泰勒展开式为:
二、凸性
(一)凸函数
凸函数是一类具有特殊性质的函数,其定义如下:
定义
如果对于定义域中的任意两点 x1 和 x2,以及任意的 λ∈[0,1],都有:
则称函数 f(x) 为凸函数。
判别准则
-
一阶条件:如果函数 f(x) 可导,则 f(x) 是凸函数的充要条件是:
对于定义域中的任意 x 和 y 成立。
-
二阶条件:如果函数 f(x) 二阶可导,则 f(x) 是凸函数的充要条件是其二阶导数非负,即:
(二)凸优化问题
凸优化问题是一类特殊的最优化问题,其目标函数和约束条件都是凸的。凸优化问题具有良好的性质,如局部最优解即为全局最优解。
三、最优性条件
(一)无约束最优化问题
对于无约束最优化问题 minf(x),其最优性条件如下:
-
一阶必要条件:在极小值点 x∗ 处,目标函数的梯度为零:
-
二阶充分条件:在满足一阶条件的点 x∗ 处,目标函数的 Hessian 矩阵正定,即:
(二)约束最优化问题
对于约束最优化问题:
其最优性条件如下:
-
一阶必要条件(KKT 条件):在极小值点 x∗ 处,存在 Lagrange 乘子 λi∗ 和 νj∗,使得:
四、算法的概念
(一)优化算法的定义
优化算法是一系列系统性的步骤或规则,用于解决最优化问题。它通过迭代的方式不断改进解,直到达到某种终止条件。
(二)常见优化算法
-
梯度下降法
-
基本思想:利用目标函数的梯度信息,沿着梯度的反方向更新变量,以最小化目标函数。
-
更新公式:
其中,α 是步长或学习率。
-
-
牛顿法
-
基本思想:利用目标函数的二阶 Taylor 展开式,在每一步迭代中构造一个二次模型来近似目标函数,并求解该二次模型的极小值点。
-
更新公式:
-
-
共轭梯度法
-
基本思想:通过构造一组共轭方向,沿这些方向进行一维搜索,以达到极小值点。共轭梯度法在计算过程中不需要存储和计算 Hessian 矩阵,因此对于大规模优化问题更为适用。
-
-
拟牛顿法
-
基本思想:通过构造一个正定矩阵来近似 Hessian 矩阵,从而避免直接计算和存储 Hessian 矩阵。常见的拟牛顿法有 DFP 算法和 BFGS 算法。
-
(三)算法的收敛性与复杂度
-
收敛性:衡量优化算法在一定条件下是否能够收敛到最优解。
-
复杂度:衡量优化算法的计算量和存储需求,通常用迭代次数和每一步的计算成本来表示。