自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(131)
  • 收藏
  • 关注

原创 YOLOV5训练自己的数据集教程(万字整理,实现0-1)

YOLOv5是一种单阶段目标检测算法,该算法在的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。YOLOv5是Glenn Jocher等人研发,它是Ultralytics公司的开源项目。YOLOv5根据参数量分为了n、s、m、l、x五种类型,其参数量依次上升,当然了其效果也是越来越好。从2020年6月发布至2022年11月已经更新了7个大版本,在v7版本中还添加了语义分割的功能。

2024-03-31 20:24:33 12442 23

原创 统计XML文件内标签的种类和其数量及将xml格式转换为yolov5所需的txt格式

对于自己标注的数据集,需在标注完成后需要对标注好的XML文件校验,下面是代码,只需将SrcDir换成需要统计的xml的文件夹即可。②imges文件夹中的train目录下的每一张图片都要有相应的xml文件,若无,则手动删除该jpg文件。解决办法:最简单就是查看你文件夹下的XML文件的大小是否为0kb,若为0kb,直接删除。①此处的xml—txt.py文件是放在datasets文件夹下的。我的标注标签有四个,分别对应下面这四个数字。接下来又是漫长且易秃的环境配置之路了。这是因为我的数据集中有XML文件为空。

2024-03-30 23:31:20 1287 2

原创 Microsoft SQL Server2019占用大量磁盘空间的解决办法(占了我C盘120G的空间!!!)附SQL数据库定时清理代理作业

先找文件路径:找到文件夹是在C:\Program Files(有可能是Program Files (x86))\Microsoft SQL Server\MSSQL15.MSSQLSERVER\MSSQL\Log\Polybase\dump。除了以.log结尾的文件(就一个),其他全部删掉就可以了。删除后对数据库没有任何影响,删不掉的话需要以管理员身份运行。出现这种情况,我在各种清理C盘后,空间还是没有太大变化 ,且几乎每天都要少2个G,后来终于找见原因了,几乎每一个都有500mb,共119G。

2024-03-16 21:17:19 7442 2

原创 opencv人脸识别实战3:多线程和GUI界面设计(PyCharm实现)

如果成功,将捕获到的图像 `img` 转换成 RGBA 格式,并创建一个 `ImageTk` 对象 `imgtk` 用于在 `panel` 中显示。设置了三个按钮 `Button`,分别用于开始人脸识别 (`f_scan_face`)、录入人脸 (`f_rec_face`) 和退出程序 (`f_exit`)。将按钮放置在窗口的特定位置,并通过 `command` 参数将按钮与对应的功能函数绑定。创建了一个空白的 `Label` 控件 `panel`,可能会用于显示摄像头捕获的图像。函数来进行人脸识别操作。

2024-03-11 00:01:02 1888 5

原创 SQL Server 2019安装详细教程(图文详解,非常靠谱)

Microsoft SQL Server 是一种关系数据库管理系统 (RDBMS)。应用程序和工具连接到 SQL Server实例或数据库,并使用(T-SQL) 进行通信。SQL Server Management Studio (SSMS) 是一种集成环境,用于管理任何 SQL 基础结构。使用 SSMS 访问、配置、管理和开发 SQL Server、和的所有组件。

2024-02-20 17:01:32 73325 14

原创 如何高效撰写AI领域学术论文——学习笔记

​摘要是论文最常被阅读的部分,需要精心打磨:1、​用1-2句话说明领域内存在的关键问题2、简明扼要地介绍你的方法创新​3、解释为什么这个方法能有效解决问题4、用具体数据展示性能提升。

2025-08-21 19:05:48 342

原创 蓝桥杯国赛前一晚知识点准备(十六届python)

1、判断文件最后一行终止输入。

2025-06-14 23:57:39 535

原创 人工智能工程师学习路线总结(下)

目录人工智能工程师学习路线总结(下)十、深度学习框架进阶(一)TensorFlow分布式训练(二)PyTorch模型优化十一、自然语言处理(NLP)进阶(一)Transformer架构详解(二)预训练语言模型的微调与应用(三)NLP项目的工程化实践十二、计算机视觉(CV)进阶(一)目标检测与跟踪的融合技术(二)图像分割技术的深化应用(三)计算机视觉的工程化挑战与应对十三、项目实战经验(一)智能客服系统开发(二)自动驾驶目标检测与跟踪系统开发(三)基于深度学习的图像风格转换应用开发分布式训练策略:随着数据集规

2025-05-26 22:00:00 1096 1

原创 人工智能工程师学习路线总结(上)

人工智能(Artificial Intelligence,AI)是一门研究如何模拟人类智能行为的学科,使计算机能够像人一样感知、推理、学习和决策。其目标是创造出能够执行通常需要人类智能的任务的机器和系统。AI 的发展可以追溯到20世纪50年代,当时科学家们首次提出“机器能否思考”的问题,并开启了对人工智能的探索之旅。AI 的应用领域极为广泛,涵盖了计算机视觉、自然语言处理、语音识别、机器人学、专家系统、游戏AI等多个方向。

2025-05-26 17:22:48 1111

原创 机器学习数学基础

它通过一个称为卷积核的小矩阵在输入数据上滑动,计算卷积核与输入数据局部区域的点积,生成输出特征图。模拟信号是连续的,而数字信号是离散的。傅里叶变换将信号从时域转换到频域,揭示信号的频率成分。常见的时域特征包括信号的均值、方差、峰值等。在机器学习中,滤波用于预处理数据,去除噪声,提高模型的鲁棒性和准确性。频域分析通过傅里叶变换将信号从时域转换到频域,揭示信号的频率成分。:提供多分辨率分析,适用于非平稳信号的分析。:将连续幅度的信号转换为离散幅度的信号。:去除信号中的噪声或提取特定频率成分。

2025-05-23 12:00:00 656

原创 AI 数学基础:最优化方法

最优化问题是一类寻找函数最小值或最大值的问题,在人工智能领域,尤其是在机器学习和深度学习中,最优化方法用于训练模型,通过最小化损失函数来提高模型的性能。如果对于定义域中的任意两点 x1​ 和 x2​,以及任意的 λ∈[0,1],都有:则称函数 f(x) 为凸函数。优化算法是一系列系统性的步骤或规则,用于解决最优化问题。它通过迭代的方式不断改进解,直到达到某种终止条件。

2025-05-23 10:00:00 840

原创 图像生成详解

生成对抗网络(GAN)通过生成器和判别器的对抗训练,能够生成高质量的图像。生成器的目标是生成足够逼真的图像,以欺骗判别器认为这些图像是真实的。判别器是一个二分类器,用于判断输入的图像是真实的还是生成的。判别器的目标是正确区分真实图像和生成图像。它通过对同一输入图像的不同增强版本进行约束,使生成器生成的图像在不同条件下保持一致。身份损失用于保持图像的语义一致性,确保生成器生成的图像在转换过程中保留输入图像的关键特征。在图像到图像的转换任务中,身份损失可以帮助生成器学习到更准确的图像映射。

2025-05-22 08:00:00 1231

原创 目标检测:YOLO 模型详解

YOLO 模型凭借其高效的端到端检测能力,在实时目标检测领域取得了显著的成果。:在前几代 YOLO 的基础上,对损失函数进行了进一步的优化和完善,使其能够更好地平衡边界框定位误差和类别分类误差之间的关系,并且针对不同尺度特征图的预测结果采用了不同的损失权重,以提高模型在不同尺度上的检测效果。:进一步改进了损失函数,采用了不同尺度特征图的损失加权求和的方式,使得模型在不同尺度上的检测结果都能够得到有效的优化,并且对边界框的坐标、宽度高度以及类别置信度的误差计算都进行了精细化的设计,以提高整体检测性能。

2025-05-21 16:00:45 4631 1

原创 图片识别(TransFormer&CNN&MLP)

Swin-Transformer 将图像分割成多个不重叠的窗口,并在每个窗口内进行自注意力计算,从而减少了计算量并提高了模型的效率。Swin-Transformer 在保持 Transformer 的全局建模能力的同时,显著提高了计算效率,使其在多种视觉任务中表现出色。尽管 Transformer 架构在近年来取得了显著进展,但 CNN 仍然是许多视觉任务的首选架构,尤其是在实时性要求较高的场景中。ViT 的出现为计算机视觉领域带来了新的思路,展示了 Transformer 架构在处理图像数据方面的潜力。

2025-05-21 10:59:14 768

原创 构建技术与知识图谱的存储

标注工具对知识图谱的构建至关重要。常用的标注工具包括但不限于SpaCy和StanfordNLP。数据处理则包括数据清洗、标注格式转换等,以确保数据的一致性和可用性。

2025-05-21 08:00:00 1104

原创 知识图谱构架

StanfordNLP 是一组用于自然语言处理的工具包,由斯坦福大学开发。它支持多种语言,并提供了丰富的功能,包括分词、词性标注、命名实体识别、句法分析、语义角色标注等。

2025-05-20 18:00:00 1548 1

原创 知识图谱基础

知识图谱是一种结构化的知识表示形式,它以图模型的形式描述概念、实体及其之间的关系。知识图谱的起源可以追溯到 2012 年,当时谷歌推出了知识图谱,旨在改善搜索引擎的结果质量,为用户提供更准确、更丰富的信息。知识图谱由节点和边组成,其中节点表示实体(如人物、地点、事件等),边表示实体之间的关系。例如,在一个知识图谱中,“牛顿” 是一个节点,表示一个人物实体;“万有引力定律” 是另一个节点,表示一个科学理论实体;而 “发现” 则是连接这两个节点的边,表示牛顿发现了万有引力定律。

2025-05-20 12:00:00 667

原创 概率图模型在 NLP 中的应用与实战

概率图模型是 NLP 领域的重要工具,通过图结构表示词汇或文本之间的概率关系,为文本分析和处理提供了强大的建模能力。本文将深入探讨概率图模型中的 HMM(隐马尔可夫模型)、MEMM(最大熵马尔可夫模型)和 CRF(条件随机场)三种模型,结合实际案例,助力读者全面掌握这些模型的原理与应用。

2025-05-20 07:00:00 954

原创 GloVe 模型讲解与实战

例如,词汇 “stratification” 即使未在训练语料中出现,模型也可以通过其子词 “stra”,“trati”,“rific”,“fication” 等推测其语义,与 “layering” 或 “classification” 等词汇产生关联。例如,在对体育新闻和科技新闻进行分类时,体育新闻中的词汇如 “比赛”“运动员”“赛场” 等的 GloVe 向量将与科技新闻中的词汇如 “芯片”“算法”“人工智能” 等的向量明显分离,分类模型可以轻松地根据这些语义特征区分两类文本。

2025-05-19 21:43:37 1559

原创 Word2Vec详解

其核心思想是基于词汇的共现关系,即 “一个词的语义由它周边的词汇决定”。例如,在大量文本中,“苹果” 与 “水果”“红色”“食用” 等词汇频繁共现,而 “微软” 则与 “软件”“科技”“比尔・盖茨” 等词汇共现。例如,在文本分类任务中,利用 Word2Vec 初始化词汇嵌入层,再通过 CNN 捕捉文本的局部特征和全局特征,能够构建更强大的分类模型。例如,在处理新闻文本时,利用 Word2Vec 向量作为输入特征,结合条件随机场(CRF)模型,能够有效提升实体识别的 F1 值,使得关键信息的提取更加高效。

2025-05-19 18:23:16 1742

原创 离散文本表示

以句子 “今天是个好日子,适合出门游玩” 为例,词汇及其次数依次为:“今天”(1)、“是”(1)、“个”(1)、“好”(1)、“日子”(1)、“适合”(1)、“出门”(1)、“游玩”(1)。例如,“今天” 就表示为 [1,0,0,0,0,0,0,0,0,0],而 “日子” 则是 [0,0,0,0,1,0,0,0,0,0],以此类推。统计词汇在文档中的频率(TF):在第一个文档中,“好” 出现了 1 次,文档总词汇数为 8(今天、是、个、好、日子、适合、出门、游玩),因此 TF = 1/8。

2025-05-18 23:17:01 1075 1

原创 NLP基础

自然语言处理,简而言之,是赋予计算机理解、解析并生成人类自然语言能力的学科。回溯历史长河,NLP 的起点可追溯至 20 世纪 50 年代,当时机器翻译领域的初步探索点燃了希望之火,科研人员渴望创造能跨越语言障碍的智能工具。然而,早期基于规则的方法很快遭遇瓶颈,面对语言的复杂性与多义性,规则数量呈爆炸式增长,难以维护。曙光在 20 世纪 80 年代出现,统计方法的引入为 NLP 注入新活力。通过从大规模语料库中挖掘语言规律,利用概率模型逼近语言现象,机器开始以更灵活方式处理语言。

2025-05-18 23:12:00 1135

原创 Transformer 架构在目标检测中的应用:YOLO 系列模型解析

YOLO(You Only Look Once)系列模型作为目标检测领域的佼佼者,自诞生以来不断推陈出新,以卓越的检测速度和准确率著称。从 YOLOv1 到 YOLOv8,每一版本都在性能和效率上实现了跨越式的提升,广泛应用于智能安防、自动驾驶、工业检测等领域。本文深入剖析 YOLO 模型的核心架构、工作原理以及实战应用,揭示其在目标检测领域的制胜秘诀。

2025-05-17 21:00:00 1343

原创 BERT 进阶:Albert 模型详解与实战

在深入探索自然语言处理(NLP)的奇妙世界时,我们常常惊叹于 BERT 模型的强大性能,它在众多 NLP 任务中展现出了前所未有的理解能力。然而,随着对模型效率和扩展性的追求,ALBERT(A Lite BERT)应运而生,它在保留 BERT 优势的同时,通过一系列创新优化,大幅提升了模型的训练和推理效率。本文将深入剖析 ALBERT 模型的架构细节、优化策略以及实战应用,助你掌握这一高效的 NLP 模型。

2025-05-17 12:00:00 1211

原创 Transformer 模型与注意力机制

Transformer 模型凭借其强大的并行计算能力和优秀的序列建模性能,在自然语言处理、计算机视觉、时序数据分析等领域取得了显著的成果,成为现代深度学习领域的重要基石。从机器翻译到图像分类,从文本生成到时间序列预测,Transformer 模型不断推动着人工智能技术的边界向前拓展。然而,Transformer 模型的探索之路仍在继续。

2025-05-16 18:45:00 920 1

原创 优化算法加速深度学习模型训练

SGD:简单易实现,但在训练后期容易陷入局部最优解,对学习率的选择较为敏感,需要仔细调参。动量梯度下降:在 SGD 的基础上引入动量项,能够有效加速收敛,提高模型的最终性能。适用于需要快速收敛且数据较为平滑的情况。Adagrad:自适应学习率机制使其在训练初期表现出较好的学习能力,但后期学习率下降过快,限制了模型的进一步优化。适用于处理稀疏数据和特征分布不均匀的情况。RMSProp:解决了 Adagrad 的学习率下降问题,表现出良好的收敛性能和稳定的学习速度。

2025-05-15 18:24:16 851

原创 深度学习计算

深度学习的飞速发展离不开强大的计算能力支撑。从张量计算到 GPU 加速,从自动微分到分布式计算,深度学习计算的每一项技术都如同精密仪器中的关键齿轮,推动着模型性能的不断提升。本文深入剖析深度学习计算的核心技术、优化策略以及前沿趋势,为你全方位解锁智能模型背后的算力密码。

2025-05-13 22:00:00 970

原创 全连接神经网络

全连接神经网络(Fully Connected Neural Network,FCNN)是深度学习中最基础且重要的网络结构之一。它宛如深度学习世界里的基石,为理解更复杂的神经网络架构奠定了坚实的基础。本文将深入探讨全连接神经网络的核心原理、构建要素、训练过程以及实际应用案例。

2025-05-13 17:49:13 2278

原创 关联规则算法

上文中,我们初步探索了关联规则算法的核心概念与主要类型,如今我们将继续深挖这一领域,剖析算法评估指标、深入实际案例,为你呈现更细腻、更具操作性的全景图。

2025-05-13 08:00:00 2257

原创 支持向量机算法

支持向量机(Support Vector Machine,SVM)作为机器学习领域中一颗耀眼的明星,凭借其卓越的分类与回归能力,在众多算法中独树一帜。它宛如一位精准的边界守护者,通过巧妙地构建超平面,将不同类别的数据精准划分,为人工智能的应用开辟了新的境界。接下来,让我们一同踏上探索支持向量机算法的奇妙之旅。

2025-05-12 22:00:00 880

原创 决策树算法

决策树算法是机器学习领域中一种重要且广泛应用的监督学习方法,它通过构建树状模型来解决分类和回归问题。凭借其可解释性强、易于理解和实现等优点,决策树在众多领域大放异彩,从数据分析、业务决策到复杂的机器学习任务,都能看到它的身影。本文将深入剖析决策树算法的核心原理、构建过程、优缺点以及实际应用案例,助力你全面掌握这一强大的工具。

2025-05-12 16:00:00 1568

原创 PyTorch:深度学习的 powerful 库

PyTorch 是一个开源的机器学习库,由 Facebook 的 AI 研究实验室(FAIR)开发并于 2016 年发布。它基于 Torch(一个早期的机器学习库)构建,旨在提供更强大的功能和灵活性,同时简化深度学习模型的构建和训练过程。self.fc1 = nn.Linear(4, 128) # 输入层到隐藏层self.fc2 = nn.Linear(128, 64) # 隐藏层到隐藏层self.fc3 = nn.Linear(64, 3) # 隐藏层到输出层。

2025-05-11 08:00:00 845

原创 Python数据分析

简要概述分析的目标、方法和主要发现。

2025-05-10 21:03:43 971

原创 Pandas:数据处理与分析

Pandas 是一个开源的 Python 数据分析库,由 Wes McKinney 于 2008 年创建。它的名字来源于 “panel data”(面板数据),这是一种在经济学中常用的多维数据类型。Pandas 的目标是为 Python 提供一个功能强大、灵活易用的数据结构和数据分析工具,以满足现实世界中复杂多样的数据处理需求。Series和DataFrame。Series是一个一维的标签化数组,而DataFrame则是一个二维的表格型数据结构,类似于 Excel 中的表格或 SQL 中的表。

2025-05-10 19:15:00 3859

原创 Numpy(python科学计算)

NumPy,全称为 Numerical Python,是一个开源的 Python 科学计算库。它最初由 Travis Oliphant 在 2005 年创建,旨在解决 Python 在数值计算方面的效率问题。Python 本身虽然具有强大的可读性和易用性,但在处理大规模数值数据时,其内置的数据结构(如列表)效率较低。

2025-05-10 14:57:23 1813

原创 Python 基础知识

NumPy:这是一个科学计算的基础库,提供了大量的数学函数和高效的多维数组对象(ndarray),在数据处理、数值计算等领域非常常用。例如,你可以用 NumPy 快速地进行矩阵运算、统计分析等操作。Pandas :它主要用于数据处理和分析,提供了 DataFrame 和 Series 这两种数据结构。DataFrame 类似于表格,可以存储二维数据;Series 则是一维数组。通过 Pandas,你可以轻松地进行数据清洗、转换、聚合等操作,非常适合处理结构化数据,如 CSV 文件中的数据。

2025-05-08 18:00:00 924

原创 机器学习与深度学习

随着网络的加深,卷积核能够自动学习到更高层次的语义特征,如物体的形状、部分等。然而,传统的 RNN 存在梯度消失和梯度爆炸的问题,长短期记忆网络(LSTM)和门控循环单元(GRU)是对 RNN 的改进,它们通过引入门控机制来控制信息的流动,能够更好地处理长序列数据,记住更长时间范围内的信息,在语音识别、时间序列预测等任务中有着广泛的应用。例如,在房价预测问题中,我们有房子的面积、位置、户型等特征数据,以及对应的实际售价(标签),模型学得这些特征与售价之间的关系后,就可以对新的房子进行价格预测。

2025-05-08 10:11:06 1468

原创 计算机网络第四章 网络层

ICMP 差错报告报文的数据字段是固定格式的:把收到的需要进行差错报告的 IP 数据报的首部和数据字段的前 8 个字节(为了得到运输层的端口号和运输层报文的发送序号)提取出来作为 ICMP 报文的数据部分。路由器刚开始的路由表是空的,通过不断地和与它直接相连的路由器交换并更新信息,经过多次更新后,所有的路由表就都会知道到达本自治系统中任何一个网络的最短距离和下一跳路由器的地址了。OSPF 只在链路状态发生变化时,才向本自治系统中的所有路由器用洪泛法发送与本路由器相邻的所有路由器的链路状态信息。

2024-11-04 20:41:19 1044 1

原创 python中堆的用法

Python中堆是一种基于二叉树存储的数据结构。

2024-10-20 20:07:26 954

原创 正则化 LP、L1、L2范数

正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的的一种手段或操作。在算法中使用正则化的目的是防止模型出现过拟合。

2024-10-15 11:11:38 2374

计算机操作系统试题库(最全).pdf

计算机操作系统是管理计算机硬件和软件资源的核心软件。它负责协调和控制计算机系统中各个组件的运行,并为应用程序提供一个可靠和高效的执行环境。 以下是一些常见的计算机操作系统相关问题,供您进行复习: 什么是操作系统?它的主要功能是什么? 解释进程和线程的概念,并说明它们之间的区别。 什么是内存管理?讲解虚拟内存和分页机制的工作原理。 了解进程调度算法,如先来先服务、最短作业优先和轮转调度等。 讨论死锁的概念和产生死锁的条件,以及处理死锁的方法。 介绍文件系统的基本概念、文件组织结构以及文件访问方式。 解释输入输出设备管理的作用和常用的I/O设备管理技术。 了解网络操作系统和分布式操作系统的特点和功能。

2024-03-17

计算机操作系统第四版期末复习知识点汇总附习题.pdf

计算机操作系统是管理计算机硬件和软件资源的核心软件。它负责协调和控制计算机系统中各个组件的运行,并为应用程序提供一个可靠和高效的执行环境。 以下是一些常见的计算机操作系统相关问题,供您进行复习: 什么是操作系统?它的主要功能是什么? 解释进程和线程的概念,并说明它们之间的区别。 什么是内存管理?讲解虚拟内存和分页机制的工作原理。 了解进程调度算法,如先来先服务、最短作业优先和轮转调度等。 讨论死锁的概念和产生死锁的条件,以及处理死锁的方法。 介绍文件系统的基本概念、文件组织结构以及文件访问方式。 解释输入输出设备管理的作用和常用的I/O设备管理技术。 了解网络操作系统和分布式操作系统的特点和功能。

2024-03-17

计算机操作系统章节复习题及答案.pdf

计算机操作系统是管理计算机硬件和软件资源的核心软件。它负责协调和控制计算机系统中各个组件的运行,并为应用程序提供一个可靠和高效的执行环境。 什么是操作系统?它的主要功能是什么? 解释进程和线程的概念,并说明它们之间的区别。 什么是内存管理?讲解虚拟内存和分页机制的工作原理。 了解进程调度算法,如先来先服务、最短作业优先和轮转调度等。 讨论死锁的概念和产生死锁的条件,以及处理死锁的方法。 介绍文件系统的基本概念、文件组织结构以及文件访问方式。 解释输入输出设备管理的作用和常用的I/O设备管理技术。 了解网络操作系统和分布式操作系统的特点和功能。

2024-03-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除