“组里来了个实习生,保证搞定一个功能。结果代码里留着AI注释,主管说:看来你和AI配合得不错,下次记得把‘队友‘的信息删干净。”

大家好,我是岳哥。

在某职场社区看到个比较尴尬的帖子,大意是:

组里来了个实习生,保证三天搞定一个复杂功能。
结果交上来的代码里赫然留着AI的注释,主管看后只是说:看来你和AI配合得不错,不过下次记得把'队友'的信息删干净。

文末可免费获取岳哥整理的自媒体运营资料

评论区议论纷纷,有人说现在的实习生太不走心了,连copy都不会;也有人说这挺真实的,现在不愿意用工具的程序员才会被淘汰。

这事儿看起来好笑,但反映的问题还是挺深刻的。

AI只是工具

现在这个时代,AI几乎已经成了程序员的标配工具。

Cursor、GPT、Claude Code,哪个程序员手里没有几个AI助手?

就连大厂的资深工程师,私下里也都在用AI写代码,这已经不是什么见不得人的事了。

但问题在于,很多人对AI的态度还停留在"作弊"的层面。

觉得用AI就是偷懒,就是不专业,这种观念其实挺落后的。

AI本质上就是一个工具,就像IDE一样。你用IDE的自动补全,用搜索引擎查API文档,这些都是在借助工具提高效率,为什么用AI就成了原罪?

关键是怎么用。

用好AI是关键

这个实习生的问题不在于用了AI,而在于用得太粗糙了。直接复制粘贴,连基本的Review都没做。

这就像你抄作业连名字都不改一样,纯属智商税。

真正会用AI的程序员,是把AI当成一个很厉害的开发工具。

你给它需求,它给你代码框架,然后你来优化、调试、重构。

这个过程中,你的经验和判断力是不可替代的。

AI可以帮你写出能跑的代码,但它写不出优雅的代码。

它不懂你们公司的代码规范,不知道你们的业务逻辑,更不清楚你们的技术栈有哪些坑。这些都需要人来把控。

现在很多公司对AI的态度也挺矛盾的:

  • 一方面知道AI是趋势;

  • 另一方面又担心员工过度依赖。

有些公司甚至明确禁止使用AI工具,觉得这会影响员工的技术成长。

这种想法其实挺短视的。AI不会让程序员失业,但不会用AI的程序员可能会被淘汰。

AI只是提升效率的工具

就像当年有了计算器,我们还需要学数学吗?当然需要。

工具的进步只是解放了我们的精力,让我们能专注于更高层次的思考。

程序员的价值不在于能背多少API,而在于能解决多复杂的问题。

AI可以帮你写代码,但它解决不了需求分析、架构设计、性能优化这些真正考验水平的东西。

这个实习生虽然犯了个低级错误,但至少他知道用工具提高效率。 比那些死撑着手写代码,然后996加班的人聪明多了。

现在的技术迭代速度这么快,靠死记硬背根本跟不上节奏。

会用AI,会快速学习,会举一反三,这些能力比背代码有用多了。

当然,基础还是要扎实的。你得知道什么是好代码,什么是坏代码。

你得理解算法原理,知道数据结构的优劣,这些是AI替代不了的。

AI只是让你站在巨人的肩膀上,但你自己得有足够的高度才能看得更远。

对于刚入行的新人来说,我觉得正确的做法是:用AI学习,但不要依赖AI思考。

让AI帮你写样板代码,但逻辑部分还是要自己来。慢慢培养自己的判断力和代码感觉。

这个实习生的主管处理得挺好的。没有严厉批评,也没有禁止使用AI,而是用一种幽默的方式提醒他要更专业一点。这种管理方式值得点赞。

技术行业最重要的是解决问题的能力。你用什么工具不重要,重要的是能把事情做好。

AI是个很棒的工具,但工具终究是工具,真正的价值还是在人身上。

现在这个时代,与其抗拒AI,不如拥抱它。学会怎么更好地和AI协作,这可能比学一门新编程语言更有价值。

未来属于那些能和AI完美配合的人,而不是害怕AI的人。

最后

周围有不少小伙伴因失业缺少收入或想额外赚点小钱。岳哥组建了一个副业群,平时分享一些自媒体搞钱项目,思维,案例,以及个人成长认知,资料放在群公告,感兴趣的可以公众号后台私信我加入免费领取。

公众号后台回复:副业群

群里禁止发广告和违规违法言论,违者移出群聊

<think>好的,我需要帮助用户准备人工智能实习生的Python编程算法测试,时间只有5天。用户可能对算法Python的基础有一定了解,但需要高效复习重点突破。首先,我得考虑5天的时间分配,每天应该集中哪些内容。第一天应该巩固Python基础,因为即使有经验,也可能忘记一些细节。比如列表推导式、生成器、装饰器等高级特性,还有常用库如NumPy、Pandas。但用户可能更关注算法测试相关的部分,比如数据结构处理。需要推荐一些快速复习的方法,比如刷题时注意语法。第二天到第四天重点在算法与数据结构。按照常见面试题,分排序、搜索、动态规划、图论等。快速排序、归并排序这些基本算法必须掌握,可能还要手写代码。树结构中的二叉树遍历、DFS、BFS是关键。动态规划问题如背包问题、最长子序列可能需要练习。图论部分最短路径、拓扑排序也是常考点。同时要结合刷题平台,比如LeetCode,按标签练习。 第五天进行模拟面试错题复习。模拟真实环境,限时做题,锻炼压力下的编码能力。复习之前的错题,避免重复错误。此外,需要提醒注意代码规范,比如变量命名、注释,还有复杂度分析。另外,要考虑到人工智能岗位的特殊性,可能会涉及机器学习相关的算法题,比如实现K近邻或决策树。虽然时间紧张,但至少了解基本原理。同时,可能数据处理特征工程的题目,需要熟悉PandasNumPy操作。 参考用户提供的引用,其中引用[1]提到熟悉Python者优先,引用[3]有编程题涉及算法数学处理,比如果篮成本计算。这明笔试可能涉及实际问题的算法应用,需要能够将问题转化为代码,比如处理数组、循环、条件判断等。例如,引用[3]的题目需要动态规划或贪心策略,可能类似LeetCode中的分割数组问题。还需要提醒用户注意代码效率,尤其是在处理大数据时的优化,比如避免不必要的循环,使用哈希表等数据结构。此外,边界条件测试,比如空输入、极值情况,也是容易出错的地方。 最后,建议用户合理安排时间,每天集中攻克一个主题,结合理论与实践,多写代码,及时总结。可能推荐一些资源,比如《剑指Offer》或LeetCode热题,但时间有限,选择高频题目更重要。</think># 如何在5天内高效准备人工智能实习生的Python编程与算法测试 ## 第一天:Python核心语法强化 1. **数据结构重点**: - 掌握`collections`模块的`defaultdict`/$deque$/$OrderedDict$[^3] - 熟练使用列表推导式:`[x*2 for x in range(10) if x%2==0]` 2. **算法工具包**: ```python # 优先记忆常用方法 import heapq # 堆排序 from bisect import bisect_left # 二分查找 ``` ## 第二天:算法基础框架搭建 1. **排序算法模板**: ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] return quick_sort([x for x in arr[1:] if x < pivot]) + [pivot] + quick_sort([x for x in arr[1:] if x >= pivot]) ``` $$T(n) = O(n\log n) \quad \text{平均时间复杂度}$$ 2. **二叉树遍历框架**: ```python def dfs(root): if not root: return # 前序位置 dfs(root.left) # 中序位置 dfs(root.right) # 后序位置 ``` ## 第三天:动态规划与图论突破 1. **DP典型问题**: - 背包问题:`dp[i][j] = max(dp[i-1][j], dp[i-1][j-w]+v)` - 最长公共子序列:`dp[i][j] = dp[i-1][j-1] + 1 if s[i]==t[j]` 2. **图论算法模板**: ```python # Dijkstra算法 def shortest_path(graph, start): heap = [(0, start)] dist = {node: float('inf') for node in graph} dist[start] = 0 while heap: current_dist, u = heapq.heappop(heap) if current_dist > dist[u]: continue for v, w in graph[u]: if dist[v] > dist[u] + w: dist[v] = dist[u] + w heapq.heappush(heap, (dist[v], v)) return dist ``` ## 第四天:机器学习算法编码 1. **K近邻实现要点**: ```python def knn_predict(X_train, y_train, x_test, k=3): distances = [np.linalg.norm(x_test - x) for x in X_train] k_indices = np.argsort(distances)[:k] k_labels = [y_train[i] for i in k_indices] return max(set(k_labels), key=k_labels.count) ``` 2. **特征工程技巧**: - 使用`sklearn.preprocessing.StandardScaler`标准化数据 - 掌握`pandas.get_dummies()`处理类别特征 ## 第五天:全真模拟与错题攻坚 1. **模拟面试策略**: - 使用LeetCode周赛模式进行45分钟限时训练 - 重点练习字符串处理(如`split()`/$join()$)矩阵操作(如转置/旋转) 2. **常见失误点检查表**: - 边界条件:空输入/单个元素/极值情况 - 复杂度分析:是否达到$O(n\log n)$要求 - 变量命名:是否使用`max_depth`代替`a`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SQL数据库开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值