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Lecture 1

Linear quadratic regulator:
Discrete-time finite horizon

e LQR cost function

e multi-objective interpretation
e QR via least-squares

e dynamic programming solution
e steady-state LQR control

e extensions: time-varying systems, tracking problems
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LQR problem: background

init

discrete-time system x;y11 = Ax; + Buy, x9g = @

problem: choose ug, u1,... so that
® T, x1,...1s 'small’, i.e., we get good regulation or control
® up,uUi,...Is ‘'small’, 7.e., using small input effort or actuator authority

e we'll define ‘small’ soon

e these are usually competing objectives, e.g., a large u can drive x to
zero fast

linear quadratic regulator (LQR) theory addresses this question
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LQR cost function

we define quadratic cost function

N-1
J(U) = Z (z1Qxr + ul Ruy) + xn QN
7=0
where U = (ug,...,uny_1) and

Q=Q">0, Qr=Qf>0, R=R">0

are given state cost, final state cost, and input cost matrices
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e N is called time horizon (we'll consider N = oo later)

e first term measures state deviation

e second term measures input size or actuator authority

e last term measures final state deviation

e (), R set relative weights of state deviation and input usage

e R > 0 means any (nonzero) input adds to cost J

LQR problem: find u,™, ..., u\" | that minimizes J(U)
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Comparison to least-norm input

c.f. least-norm input that steers x to xy = O:

e no cost attached to xg,...,rN_1

e rn must be exactly zero

we can approximate the least-norm input by taking

R =1, Q =0, Qy large, e.g., Qf = 10%71
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Multi-objective interpretation

common form for () and R:
R=pl, Q=Q;=C'C

where C € RP*™" and p € R, p >0

cost Is then

N N-—-1
JWU) =) y=1*+p > Nu
7=0 7=0

where y = Cx

here ,/p gives relative weighting of output norm and input norm
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Input and output objectives

fix zog = ™" and horizon N; for any input U = (uq,...,un_1) define
e input cost Ji,(U) = Z]TV:_Ol |||

e output cost Jout(U) = Z]TVZO ly-I?

these are (competing) objectives; we want both small

LQR quadratic cost is Jout + pJin
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plot (Jin, Jout) for all possible U:

e shaded area shows (Ji,, Jout) achieved by some U

e clear area shows (Jin, Jout) not achieved by any U
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three sample inputs Uy, Uy, and Us are shown

e Uj is worse than U on both counts (Ji, and Jout)

e Uy is better than Us in Jiy, but worse in J .t

interpretation of LQR quadratic cost:
J = Jout + pJin = constant

corresponds to a line with slope —p on (Jiy, Jout) plot
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o J = Jout + pJin = constant

.
~ ~ ~
— S

e LQR optimal input is at boundary of shaded region, just touching line of
smallest possible J

e us is LQR optimal for p shown

e by varying p from 0 to 400, can sweep out optimal tradeoff curve
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LQR via least-squares

LQR can be formulated (and solved) as a least-squares problem

X:(ZIZ(),..

X0

LN

0
B
AB

0
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] AN:—lB AN:—QB

.xn) is a linear function of xy and U = (uy, ..

Uop

UN-—-1

LSUN—1):

I~

express as X = GU + Hxq, where G € RVxNm pr o RNnxn
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express LQR cost as

W) = [diag(@2. .. Q"2 QY (GU + Ha)|

2
+ diag(Rl/z,...,Rl/Q)UH

this is just a (big) least-squares problem

this solution method requires forming and solving a least-squares problem
with size N(n +m) x Nm

using a naive method (e.g., QR factorization), cost is O(N>nm?)
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Dynamic programming solution
e gives an efficient, recursive method to solve LQR least-squares problem;
cost is O(Nn?)

e (but in fact, a less naive approach to solve the LQR least-squares
problem will have the same complexity)

e useful and important idea on its own

e same ideas can be used for many other problems
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Value function

fort =0,..., N define the value function V; : R — R by

N-1
Vi(z) = . mgj{f Z (21 Qxr +ul Ruy) + 2 nQrrn
IARER —1 —t
subject to z; = 2, ©41 = Az, + Bu,, r=1¢t,...,T

e Vi(z) gives the minimum LQR cost-to-go, starting from state z at time ¢

e Vio(xp) is min LQR cost (from state x( at time 0)
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we will find that
e V; is quadratic, i.e., Vi(z) = 21 P;z, where P, = P! >0
e P, can be found recursively, working backward from t = N

e the LQR optimal u is easily expressed in terms of P;

cost-to-go with no time left is just final state cost:
Vn(2) = 2" Qyz

thus we have Py = Q¢
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Dynamic programming principle

e now suppose we know V. 1(2)
e what is the optimal choice for u;?

e choice of u; affects

— current cost incurred (through u! Ruy)
— where we land, z;11 (hence, the min-cost-to-go from x;1)

e dynamic programming (DP) principle:

Vi(2) = min (2" Qz + w’ Rw + Vi41(Az + Bw))

— 21'Qz + w? Rw is cost incurred at time ¢ if u; = w
— Vir1(Az + Bw) is min cost-to-go from where you land at ¢ + 1
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e follows from fact that we can minimize in any order:

min f(wq,...,w;) = min ( min  f(wq,... ,wk)>
Wi,y WE w1 Wyeo. W

\ 4

a fct of w1

in words:
min cost-to-go from where you are = min over
(current cost incurred + min cost-to-go from where you land)
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Example: path optimization

e edges show possible flights; each has some cost

e want to find min cost route or path from SF to NY

Seattle Chicago
Denver
NY
SF
Los Angeles Atlanta
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dynamic programming (DP):
e V(i) is min cost from airport i to NY, over all possible paths

e to find min cost from city ¢« to NY: minimize sum of flight cost plus min
cost to NY from where you land, over all flights out of city ¢
(gives optimal flight out of city ¢ on way to NY)

e if we can find V(¢) for each i, we can find min cost path from any city
to NY

e DP principle: V(i) = min;(cj; + V(j)), where c;; is cost of flight from
? to 7, and minimum is over all possible flights out of ¢
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HJ equation for LQR

Vi(z) = 27Qz + min (w' Rw + Vi4.1(Az + Bw))

e called DP, Bellman, or Hamilton-Jacobi equation
e gives V; recursively, in terms of Vi1
e any minimizing w gives optimal wu:

wd = argmin (w" Rw + Vi41(Az + Bw))

w
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e let's assume that Vi11(2) = 21 Piyqz, with Py = PL, >0

e we'll show that V; has the same form
e by DP,

Vi(2) = 2" Qz 4+ min (w' Rw + (Az + Bw)" Pi11(Az + Bw))

e can solve by setting derivative w.r.t. w to zero:

2w R+ 2(Az + Bw)' P,y B =0

e hence optimal input is

w* = —(R+B'P, . B) 'B"P, Az
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e and so (after some ugly algebra)

Vi(z) = 27Qz+ w* Rw* + (Az + Bw*)! P,y (Az + Bw™)
= 2" (Q+A"Pp1A— A"P.(1B(R+ B"P41B) 'B'" Py A) 2
— 2Pz

where

P=Q+A"P,A— A"P,\B(R+B"P,.1B)"'B"P.,1A

e casy to show P, = PtT >0
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Summary of LQR solution via DP

1. set Py = Q¢
2. fort=N,...,1,

P_1:=Q+A"PA-A"PB(R+B"P,B)"'B'PA
3. fort =0,...,N —1, define K; := —(R+ B'P,1B)"'BTP,_ A

4. fort=0,...,N —1, optimal u is given by u;" = Kz,

e optimal w is a linear function of the state (called linear state feedback)

e recursion for min cost-to-go runs backward in time
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LQR example

2-state, single-input, single-output system

1 1 0
fl?t+1:[0 1]$t+[1]%§, yt:[l O}ft
with initial state 2o = (1,0), horizon N = 20, and weight matrices

Q=Q;=C"C.  R=pl
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optimal trade-off curve of Ji, vs. Jout:

J out

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

circles show LQR solutions with p = 0.3, p = 10
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u & y for p=10.3, p = 10:

0.5

05 I I I I I I I I I I
2 4 6 8 10 12 14 16 18 20
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optimal input has form u; = K;x;, where K, € R *?

state feedback gains vs. ¢ for various values of ()¢ (note convergence):
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Steady-state regulator

usually P; rapidly converges as t decreases below NV

limit or steady-state value P satisfies
Py=Q+ A"P,A—- A"P ,B(R+ B'P,B) 'B'P A
which is called the (DT) algebraic Riccati equation (ARE)

e P, can be found by iterating the Riccati recursion, or by direct methods

e for t not close to horizon N, LQR optimal input is approximately a
linear, constant state feedback

Ut — Kssajta Ky = _(R + BTPSSB)_lBTPssA

(very widely used in practice; more on this later)
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Time-varying systems

LQR is readily extended to handle time-varying systems
Ti41 = Agry + By

and time-varying cost matrices
N-1

J = Z (xZQTxT + uZRTuT) + ZC%QJCCCN

7=0

(so Qy is really just Qn)

DP solution is readily extended, but (of course) there need not be a
steady-state solution
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Tracking problems

we consider LQR cost with state and input offsets:

N-—1

J — (xT T '/ET)TQ('CUT T :ET)
7=0
N-—1

-+ (ur — @r ) R(uy — ty)
7=0

(we drop the final state term for simplicity)

here, x, and u, are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems
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Gauss-Newton LQR

nonlinear dynamical system: ;1 = f(x¢, us), xo = ™
objective is
N-1

J(U) = Z (21 Qxr +ul Ruy) + xnQrry
7=0

where @ = Q" >0, Qf =Q% >0, R=R" >0

start with a guess for U, and alternate between:

e linearize around current trajectory

e solve associated LQR (tracking) problem

sometimes converges, sometimes to the globally optimal U
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some more detail:

e let u denote current iterate or guess
e simulate system to find x, using x;11 = f(x¢, uy)

e linearize around this trajectory: dx;11 = Adxs + Biduy

Ay = Dxf(xta Ut) B, = Duf<xt7 Ut)

e solve time-varying LQR tracking problem with cost

2

~1
J = (zr + 62:)  Q(xr + 0z,

3
I
-}

b

+ (ur + 6ur)  R(uy + Suy)

3
I
-}

e for next iteration, set u; := uy + duy
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