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ABSTRACT
We consider the problem of discovering local events on the web,
where events are entities extracted from webpages. Examples of
such local events include small venue concerts, farmers markets,
sports activities, etc. Given an event entity, we propose a graph-
based framework for retrieving a ranked list of related events that a
user is likely to be interested in attending. Due to the difficulty of
obtaining ground-truth labels for event entities, which are temporal
and are constrained by location, our retrieval framework is unsuper-
vised, and its graph-based formulation addresses (a) the challenge
of feature sparseness and noisiness, and (b) the semantic mismatch
problem in a self-contained and principled manner.

To validate our methods, we collect human annotations and con-
duct a comprehensive empirical study, analyzing the performance
of our methods with regard to relevance, recall, and diversity. This
study shows that our graph-based framework is significantly bet-
ter than any individual feature source, and can be further improved
with minimal supervision.
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1. INTRODUCTION
Recently, the problem of recommending events to users has re-

ceived considerable attention from the research community. Given
a set of scheduled events such as concerts, hiking activities, or con-
ferences, a number of algorithms were proposed to recommend
events to attend. These algorithms either focus on events in a partic-
ular domain such as scientific talks [26], or events from the Event-
Based Social Networks (EBSN), such as Meetup and Plancast [11,
25]. Since it is relatively easy to collect user feedback and inter-
action information when there are only a few well-curated event
sources available, existing methods require supervision when tack-
ling the event recommendation task.

In this paper we address the task of discovering related events in
a much more general setting and at a larger scale – we consider all
available events extracted from pages across the entire web. More
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specifically, we only require an extracted event to be described by
three fields: What, Where, and When, corresponding respectively
to event title (a short description of the event), location and time.
Given such an event, our task is to find a ranked list of events related
to it. Event A is related to event B if a user, attending or interested
in event A, is also interested in attending event B.

In this paper, we study events annotated by Schema.org1 markup,
which naturally provides the three fields. We use Schema.org since
it is a rich source of structured annotations – recent research shows
that more than 30% of web pages have Schema.org markup, with
Events being one of the most popular categories [18]. However, it is
important to note that our methodology is not limited to Schema.org
events. Augmented with techniques to automatically extract events
from any free-text web pages, e.g., [16], our system could become
a powerful tool for related event discovery across the web.

It is important to point out that the process of event discovery
and recommendation is exploratory, rather than precision-driven,
as users often do not have a specific information need in mind, and
are more interested in exploring related nearby events. Thus, pre-
senting hiking events to a user who attended a hiking event in the
past might be safe, but does not provide a serendipitous experience.
Instead, our aim is to retrieve and recommend more diverse seman-
tically related events such as rock climbing, caving or backpacking.
Table 1 demonstrates this point by showing related events retrieved
by our system for two example query events.

Table 1: Examples of related events, retrieved by our system in
response to example query events.

Query event Hiking Trip: Armstrong Woods With Marcia 7-8 Miles.

Relevant events
Rock Climbing: Yosemite: Snake Dike.
Caving: Church Cave, Fresno County, Kings Canyon
National Park.
Sunol Wilderness Backpacking Overnight! 3.74Mi
1400Ft.

Query event Free Energy System Tour.

Relevant events
Healing Wednesdays – Get relief from your emotional
and physical pains.
Isha Kriya Guided Meditation – Free Class.
Yoga and Yoga-Nidra.

In addition, since event relevance is restricted by location and
time (past events or events in other countries or states are not likely
to be relevant), the inventory of potentially related events can be re-
stricted. Therefore, simple retrieval methods based solely on event
title or body matching will suffer from low recall problem.

Retrieving semantically relevant events could alleviate the recall
problem, and possibly lead to serendipitous discoveries. In order

1http://schema.org/Event.
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to address semantics, one might argue that important keywords in
event descriptions, such as hiking or climbing, could be looked up
in a knowledge base to find semantically close terms. However,
it is not always easy to identify such keywords or phrases in a
sentence. Even if we have successfully extracted the keywords,
given the diversity of events, corresponding answers might not ex-
ist in a knowledge base. For example, the second query in Table 1
shows an event about human body energy and healing. Simply
searching keywords free energy system in a knowledge base will
yield results about thermodynamic systems, while in reality, users
are much more likely to be interested in attending events featuring
healing, meditation or yoga.

Therefore, in this paper we investigate the feasibility of tackling
the semantic matching challenge and alleviating the retrieval recall
problem via a more general and formal approach. We propose a
self-contained graph-based framework for retrieving a ranked list
of related events. This framework takes into account multiple con-
textual features that can be associated with a web-extracted event,
including extracted field text, surrounding text of the page, taxon-
omy classification, related queries, etc. The features are integrated
into a single event-feature bipartite graph, and retrieval is done via
graph propagation methods.

Compared with prior work, the detailed contributions of our work
are as follows. First, we formulate the problem of local event rec-
ommendation, and propose a novel graph-based retrieval frame-
work to solve this problem. Unlike the existing methods, our frame-
work scales the solution beyond a few curated sources of informa-
tion to the open web, and does not require ground-truth data, which
can be difficult to obtain for events, due to their transient and local
relevance. However, we do demonstrate that our framework per-
mits integration of labeled examples via learning-to-rank.

Second, we propose a practical solution for extracting event-
related features from sparse and noisy data. Events, due to their
transient and local nature, do not share many of the clean and well-
formatted properties enjoyed by other common entities, e.g., peo-
ple or organizations. These common entities are usually annotated
by RDF with rich information recorded in knowledge bases, and
are mentioned multiple times in different webpages, providing suf-
ficient context information. In contrast, events are described by a
short title, typically not stored in a knowledge base, and are present
only at one, or at most a handful of web pages. Moreover, these
pages often do not give details about the events, other than a short
title and description. Given these challenges, we resort to a variety
of contexts of the event on the web page to extract various signals,
enriching the limited information obtained from the fields of the
event entity. However, these signals should be used with care, as
they are noisy and sparse. To this end, we provide a description of a
data pipeline to (a) mine data from different sources associated with
the event page, (b) aggregate data from these different sources into
a unified feature representation, and (c) remove noisy / irrelevant
features through a novel local stopword detection technique.

Finally, we provide a comprehensive empirical study of the pro-
posed methods. We collect human annotations and analyze the per-
formance of our methods in terms of relevance, recall, and diver-
sity for event recommendation in four large US metropolitan areas.
Our study shows that the graph-based framework is significantly
better than any individual feature source. It also outperforms stan-
dard retrieval baselines, including title matching, rank fusion and
pseudo-relevance feedback, and can be further improved with min-
imal supervision.

While the focus of our paper is on events, our proposed meth-
ods are general and can be applied to other long-tail entities that
are constrained by time or location. A case in point are local busi-

ness entities (e.g., restaurants, small retailers, etc.), for which not
enough (or not at all) rating information exists online.

The rest of the paper is organized as follows. We discuss related
work in Section 2. Section 3 provides a description of our dataset.
Section 4 proposes methods to tackle the challenges, followed by
the setup of experiments in Section 5. Section 6 presents the results
of experiments, including a detailed analysis of methods and fea-
tures. We conclude the paper and discuss future work in Section 7.

2. RELATED WORK
A survey of literature shows that existing work studies events

from particular domains or websites. In this work, we consider any
events that could be extracted from the web into three fields – What,
Where, and When. In the absence of user information, we attempt to
employ unsupervised learning techniques to retrieve related events.

2.1 Event recommendation
Some studies focus on recommending events of a particular cat-

egory. Minkov et al. [26] adopt collaborative filtering methods to
recommend scientific seminars to users in universities based on
feedback. Collecting user feedback from a Belgian cultural event
website, popular recommendation approaches are examined in [15].

An active line of research is event recommendation on the Event-
Based Social Networks (EBSN), such as Meetup and Plancast. Both
content based and collaborative filtering methods are studied. Re-
searchers try to mine information from co-participating links, fol-
low links, and user profiles [22, 24, 23, 29, 25].

The above methods study events from a particular domain, or
from a few event websites, where user information is available for
supervised learning. In contrast, we consider a more general setting
where events are extracted from webpages. Considering the tran-
sient and local relevance of events, ground-truth information is hard
to come by. Therefore, we exploit retrieval-based and unsupervised
learning techniques to discover related events.

2.2 Entity search
Given that events are Schema.org annotated entities, a line of re-

search broadly related to this work is entity search. Entity search
tasks have received attention from both TREC and INEX confer-
ences, where various tasks have been proposed [12, 2]. In these
tasks, entities are defined by their homepages (e.g., a Wikipedia
page describing the entity), which provides rich information for
retrieval. First, category and link information is available in knowl-
edge bases [12], facilitating the interpretation of the relationships
between entities [1, 5]. Second, each homepage provides abundant
text information to describe the entity. Utilizing both text and cate-
gory information, performance can be improved by language mod-
eling [40, 42]. Graus et al. [17] dynamically incorporate various
sources for entity representation.

Another branch of related work comes from the community of
semantic web, where RDF is usually used to describe entities. RDF
datasets are graphs where nodes are resources and edges are re-
lations between resources. PageRank can be used to rank RDF
graphs [14, 19]. Ranks from RDF graphs can be complemented by
structures of source webpages and knowledge bases [20, 13].

Studies most relevant to ours formulate entity search as a re-
trieval task. Conrad and Utt [7] create pseudo documents by col-
lapsing paragraphs mentioning an entity. Language models can be
built on words surrounding the entities [27, 31]. For RDF objects,
attributes are treated as words in documents for ranking [28, 6].

When relevance judgments or user clicks are available, learning
to rank techniques can be employed. Dali et al. [9] rank RDF en-
tities by extracting features from RDF graphs and external knowl-



edge source. Ranking entities in web search has been studied by
extracting statistical features, or graph based features from query
logs, Flickr, tweets and structured collections [38, 21].

A relevant task is TREC Enterprise search, which aims to find
experts pertaining to a query [35].

The above methods make at least one of the following assump-
tions for entities: (1) associated with a homepage; (2) expressed
by RDF; (3) defined in knowledge bases; (4) popular enough to
appear in multiple webpages. In contrast, we address events with
following characteristics:
• There are usually no homepages to fully describe the events.

Though there is a webpage displaying the event details, sur-
rounding context might be noisy or irrelevant.
• Unlike RDF entities, no explicit links between events exist, and

descriptions for these events are often terse and ambiguous.
• New events are created on a daily basis, making it hard to define

and store them in knowledge bases.
• Usually each event only occurs once in one webpage. As a result,

it would be questionable to utilize occurrence information and
aggregated surrounding context information.

These challenges complicate the task of discovering related events,
making it infeasible for the application of most methods proposed
for standard entity search scenarios. These difficulties also necessi-
tate the investigation of how approaches requiring minimal super-
vision can be adapted to tackle the present problem.

3. DATASET
As noted above, event extraction from free-text webpages is not

the focus of present work. For simplicity, we utilize Schema.org an-
notated events, which are described by three fields: What, Where,
and When [16], respectively corresponding to event title (a short
description of the event), location and time. These events are ex-
tracted from a large web crawl of English webpages, resulting in a
total of 6,105,223 events. Although in this work we use a propri-
etary corpus, similar datasets can be obtained by extracting events
annotated by Schema.org from public corpora like ClueWeb122 or
Common Crawl3 (see, e.g., [16] for more details). Additionally,
Schema.org is an open-source mark-up that can be parsed by any-
one.

Events are typically locality-sensitive – people usually only care
about events in their geographical proximity. Hence, it is reason-
able to consider relevance of events within a certain range. For
evaluation, in experiments we study four major metropolitan re-
gions in the United States with a significantly large inventory of
extracted events. We focus on the United States due to the preva-
lence of Schema.org events in this country [16]. However, our pro-
posed framework does not utilizes knowledge specific to United
States and is general enough to be applied to other areas.

After the four regions have been selected, we set a geo-point at
the center of each region, and events in a radius of 100 miles from
this geo-point are included. Table 2 describes statistics of these
regions.

4. EVENT DISCOVERY METHODS
In this section, we formulate a general framework for event dis-

covery on the web. Our framework is retrieval-based and unsuper-
vised, since event entities extracted from the web will, in general,
have no ground-truth labels available. While the main focus of this
paper is on events, the proposed framework is general enough to

2http://lemurproject.org/clueweb12/
3http://commoncrawl.org/

Table 2: Statistics of extracted events for four metropolitan re-
gions in the United States.

Region # events Geo-point
New York 57,780 40.66, -73.93

San Francisco Bay Area 28,442 37.40, -122.10
Chicago 23,873 41.84, -87.68

Philadelphia 57,395 40.01, -75.13

be applied to discover other entity types, as it only requires the fol-
lowing two conditions to be met:
1. Entities (e.g., events) can be reliably extracted from web pages.
2. We can extract some features describing the entity from its con-

text (e.g., text describing the entity, its surrounding text, etc.).
We start our discussion in Section 4.1, where we first describe how
event discovery satisfies these conditions, and provide the general
framework formulation. Then, in the remainder of this section, we
discuss a concrete implementation of this framework for event dis-
covery. Please note that since this is the first attempt to tackle event
retrieval at such a large scale, our study is exploratory and does not
address the efficiency issues related to online event retrieval. We
discuss the adaptation of our methods to efficient online algorithms
in Section 6.5.

4.1 Problem formulation
We start our discussion by assuming that we can extract events

(or other entity types) from web pages. As described in Section 3,
Schema.org markup provides an extensive source of such extrac-
tions, and provides information on multiple types of entities.

Once extracted, each event is associated with a set of features
based on its text, or other context that can be associated with it.
Due to the noisiness and sparseness of such features, they may be
unreliable for direct use, and could have low precision and recall.

For instance, let us consider simply matching events by their ti-
tle. This approach may lead to many term mismatches, due to the
short title length. On one hand, matching by title terms would fail
to find the connection between hiking and climbing, which are both
outdoor sports. On the other hand, it might suggest that Soccer
Night on Friday and Movie Night on Friday are related, as they
share most terms. To retrieve events more reliably, we propose two
approaches to aggregating multiple feature categories.

4.1.1 Event Search
Assuming a list of k feature categories, we denote Fj

S a set of
features extracted from feature category j associated with a source
(or query) event S. Similarly, Fj

T is a set of features extracted from
feature category j for some target event T . A simple approach is
combining the similarity of these features into a single aggregate
similarity score sc(S, T ), which can be generally expressed as:

sc(S, T ) = φ(sc(F1
S ,F1

T ), . . . , sc(Fk
S ,Fk

T )), (1)

where φ is some aggregation function. This approach is akin to the
rank fusion method, which was proved to be successful in ad hoc
information retrieval [8].

We refer to this aggregation approach COMBINER. Its concrete
implementation is described in more detail in Section 4.3.

An important shortcoming of COMBINER is that it does not ad-
dress semantics sufficiently, as each source-target event pair is ex-
amined independently of other events. If we leverage the connec-
tions between events, more semantic information could potentially
be exploited. While, in principle, it is possible to mine external
knowledge to acquire such connections, it is not easy to extract
the right keywords from event titles, and map them correctly to

http://lemurproject.org/clueweb12/
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related terms in a semantic knowledge base, as explained in Sec-
tion 1. Hence, we propose a more self-contained approach instead.

We build a feature-event bipartite graph, where event similarity
can be propagated through the edges. Intuitively, in this framework
two events may be similar if they share connections to other similar
events. Formally, this approach can be described as follows:

sc(S, T ) = φ(sc(F1
S ,F1

T ,
⋃

N∈NS,T

F1
N ), . . . ,

sc(Fk
S ,Fk

T ,
⋃

N∈NS,T

Fk
N )),

(2)

where NS,T is the neighborhood of the events S and T in the
feature-event graph. Note thatNS,T models the entire graph struc-
ture to find related events, not just the immediate neighborhood.

We call this graph-based approach EXPANDER, as it expands the
set of compared results by their graph neighborhoods. Its concrete
implementation is described in more detail in Section 4.4.

4.2 Feature preparation
We give an overview of the feature processing pipeline that ex-

tracts the features, normalizes them, and reduces the noise in the
processed data. The resulting features are fed into either COM-
BINER or EXPANDER described in the previous section for similar-
ity computations. This general process is illustrated in Figure 1.

4.2.1 Feature extraction
A simple method of retrieving similar events is pure textual match-

ing of event descriptions. However, event descriptions are short
and term mismatch is very common. E.g., Miles Davis and John
Coltrane are both jazz musicians, but textual matching will not be
able to reveal this fact. As a result, this simple method could suffer
from limited accuracy and low recall. However, information from
the event entity itself is limited, as an event is only described by
three fields: What, Where, and When.

Therefore, to enrich the information obtained from events, we
resort to their context. The context, in its most general sense, can be
represented by a set of feature categories associated with an event
entity, which are extracted from the source webpage(s) displaying
the event. Specifically, we consider these feature categories:
1. TITLE. The title, or What field of the event entity, which usually

describes the event in one to two sentences.
2. SURROUND. Surrounding text around the event entity, for which

the window size is set to 2,000 characters.
3. QUERY. We use a query log from a commercial search engine to

mine query information. A query will be collected from the log
if it leads to a click on the source webpage containing an event.
These queries are general and might not be event-specific.

4. ANCHOR. Anchor text pointing to the source webpage(s).
5. TAXONOMY. Taxonomic categorization of the source webpage(s).

We use a proprietary classifier, trained to output the taxonomic
categories of each webpage, using a predefined hierarchical tree.
This tree is almost the same as the hierarchical ontology scheme
provided by the Open Directory Project4 – a few top categories,
e.g., arts, business, and computers, are expanded to more spe-
cific ones like painting, advertising and computer memory. A
webpage could be labeled by multiple categories, including both
abstract and specific ones, but we only use leaf categories in the
tree as features, preventing TAXONOMY based ranker from re-
trieving events that are only remotely related.

The first four categories of information are textual, and are stemmed
by Porter stemmer, and converted to unigram and bigram features.
4http://www.dmoz.org/

Events are de-duplicated after feature extraction, making it easier
to merge feature values of duplicate events. For simplicity, events
with identical titles are considered as duplicates. To merge fea-
tures of duplicate events, feature values of SURROUND, QUERY,
and ANCHOR are summed up, and max is taken for TAXONOMY.

4.2.2 Noise reduction
Stopword removal and term reweighting are standard practice to

reduce feature noise in information retrieval. Features with high
frequency are considered as stopwords in this setting. One interest-
ing finding is that even after stopword removal on the entire event
set, frequent but non-important features remain when we focus on
events of a specific region. For example, many events from New
York contain the phrase New York, which might not be a stopword
feature globally. To solve this problem, we propose the idea of lo-
cal stopwords, which are frequent features for events of a particular
region. This idea leads to two levels of stopword removal – global
and local.

To reweight features, we apply log normalized TF-IDF. Feature
frequency is logarithmically scaled to further scale down the fre-
quent features, as we observe a rather skewed distribution of fea-
ture frequency, even after stopword removal. More specifically,
weightij of a featurej in a particular eventi is calculated as:

weightij = log(1 + tfij)× log(
N

dfj
) (3)

where tfij is the frequency of featurej in eventi, N is the col-
lection size, or in this context the total number of events, and dfj is
the number of events where featurej appears.

4.3 Combiner
Representing events by a feature set allows us to obtain related

events by measuring similarity between features. To instantiate
Equation 1, we use Jeffreys-Kullback-Leibler divergence, which is
a symmetric version of Kullback-Leibler divergence. We employ a
measure on probability distributions because we treat each event as
a distribution of features. We prefer the symmetry of this measure
since we consider the similarity between events to be symmetric.
The similarity score is normalized, with 0 being least similar and 1
being most similar. More precisely, given features Fj

S and Fj
T , the

similarity between source event S and target event T is defined as

sc(Fj
S ,F

j
T ) = exp

[
−1

2

(
D(Fj

S ||F
j
T ) +D(Fj

T ||F
j
S)
)]

(4)

where D(·||·) is the Kullback-Leibler divergence.
Given a source event, each individual ranker rankerj ranks tar-

get events based on one feature category j using score calculated in
Equation 4. For example, QUERY-ranker computes the similarity
score based on terms in queries that can be associated with events
and ranks target events accordingly. As another example, using TI-
TLE-ranker alone will result in a standard retrieval based on event
titles.

Individual rankers could be unstable, and fail completely when
the feature category is absent for one event. To combat this insta-
bility, we combine rankings from individual rankers into a single
ranking list by Reciprocal Rank Fusion [8], which has empirically
proven to be effective in combining individual rankers. Specifi-
cally, suppose rankerj assigns event T a ranking of rjS,T w.r.t.
some source event S. Then, the fused ranking score sc(S, T ) can
be expressed as

sc(S, T ) =
∑
j

1

rjS,T +K
(5)

http://www.dmoz.org/
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Figure 1: Related event discovery pipeline.

where K is a large predefined constant that reduces the impact of
high rankings given by outlier rankers.

To illustrate the idea of COMBINER, consider a simple example
using only TITLE- and QUERY-rankers. Suppose we have a source
event S and a target event T . Our objective is to rank T by the
similarity to S. Suppose TITLE ranks T at position 5, i.e., rTITLE

S,T =

5, while QUERY ranks it at first position: rQUERY
S,T = 1. In this

case, COMBINER gives the similarity score between S and T as
sc(S, T ) = 1

5+K
+ 1

1+K
.

4.4 Expander
COMBINER relies on individual rankers that make comparisons

between each pair of events in a geographical region, which is
computationally expensive. Furthermore, it might miss many se-
mantically related events. Admittedly, QUERY- and TAXONOMY-
rankers might help with semantics, but the information is limited
and many events are not associated with any queries, or prede-
fined taxonomic categories. To better address semantics, we use
the following intuition: if event A is similar to event B, some of
their features might be semantically related. This leads to the idea
of constructing a graph in which (event and feature) data is rep-
resented by nodes while edges connect nodes that are related to
each other. Edge weights are defined using a similarity function on
node pairs and govern the strength of the semantical relationships
between the nodes. To learn over this graph, we exploit the idea
of label propagation [43, 4, 3, 37, 39, 32], a graph-based learn-
ing method that uses the information associated with each labeled
“seed” node, and propagates these labels over the graph in a prin-
cipled, iterative manner. This method scales well to large data size,
which is an important aspect for our task.

4.4.1 Graph construction
There are two types of input sources for label propagation: the

graph and the seed labels. The algorithm propagates the seed labels
based on the provided graph structure, outputting a distribution of
seed labels for each node in the graph.

Traditionally, label propagation is performed on homogeneous
graphs, e.g., a graph only with events as nodes. However, this
graph structure leads to some issues. First, absence of features
in the graph results in a loss of information of the semantic con-

nections between features. Second, edge weight, or similarity be-
tween events, has to be pre-defined by a rigid scoring function (sim-
ilarly to COMBINER). In addition, edge weight cut-offs have to
be pre-determined to control the graph density (in a fully dense
graph, computing similarity between every pair of events will be
prohibitively expensive).

To address these issues, we build an event-feature bipartite graph
for label propagation, where both events and features are nodes. In
this case, EXPANDER can naturally use feature information to find
similar events, without defining in advance the similarity measure.
An eventi is linked to featurej if eventi has featurej , with
edge weight defined in Equation 3. If a feature is shared by mul-
tiple feature categories, we collapse them. For example, “movie”
from QUERY and TITLE are collapsed into one feature, with val-
ues added up. This practice reduces feature dimension, mitigating
feature sparsity issues.
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  fic(on	
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  Features	
  

Events	
  

Figure 2: An example of event-feature bipartite graph for EX-
PANDER. Events, represented by blue rectangles, are connected
to their features, which are in green circles.

An example of the constructed graph is shown in Figure 2. Though
movie and film are not directly connected in Figure 2, sharing a
large number of neighbors could promote their similarity.

Our constructed graph is very flexible – direct links between
events or features could be added, if we had prior knowledge about
their relationships. For instance, we could know from a thesaurus
that feature film is a synonym for movie, and thus can be directly
connected in the graph. In this exploratory study, we do not con-
sider these direct links since we want to evaluate EXPANDER with-
out additional knowledge, making it comparable to COMBINER.

Seed labels are ground-truth labels to be propagated across the
graph. For example, if we know that event A and B are truly rel-



evant, event A could have a label “event B”. Unfortunately, we do
not have such ground truth information available. As a result, we
use identity labels as seeds, meaning that each event is a relevant
label for itself. For example, event A is labeled as “event A”.

4.4.2 Objective function
Given a graph constructed with event and feature nodes, the ob-

jective function of EXPANDER (a variant of [4]) simultaneously
minimizes the following over all nodes in the graph:
• squared loss between true and induced label distribution.
• regularization term that penalizes neighboring feature nodes that

have different label distributions from this event node.
• regularization term that smooths the induced label distribution

towards the prior distribution, which is usually a uniform distri-
bution in practice.
More precisely, given a single event node iwith its feature neigh-

borsN (i), the objective function being minimized is:

||Ŷi − Yi||2 + µnp

∑
j∈N (i)

wij ||Ŷi − Ŷj ||2 + µpp||Ŷi − U ||2 (6)

where Ŷi is the learned label distribution for event node i, Yi is the
true label distribution, µnp is a predefined penalty for neighboring
nodes with divergent label distributions, Ŷj is the learned label dis-
tribution for feature neighbor j, wij is the weight of featurej in
eventi, µpp is the penalty for label distribution deviating from the
prior, a uniform distribution U .

The objective function for a feature node is alike, except that
there is no first term, as there are no seed labels for feature nodes:

µnp

∑
i∈N (j)

wij ||Ŷj − Ŷi||2 + µpp||Ŷj − U ||2 (7)

It is important to note the connection between EXPANDER and it-
erative query expansion [33], as they both utilize neighbor’s neigh-
bors to find events. However, iterative query expansion requires
users to specify the similarity metric between events, and the ex-
pansion process is ad hoc. In contrast, EXPANDER integrates mul-
tiple feature categories in a principled way, and labels are computed
by optimizing an objective function over the entire graph.

5. EXPERIMENTAL SETUP

5.1 Parameters
For all parameters in the methods, we set them to values com-

monly used in practice. Specifically, K in Reciprocal Rank Fusion
is set to 60, following [8]. To remove stopword features, we calcu-
late frequency histogram for each feature category, and generally
consider features within the 10th percentile to be stopwords. Label
propagation is run for 5 iterations, with neighbor penalty µnp set to
0.5, and prior penalty µpp 0.001.

5.2 Data preparation
In order to prepare data for human judgments, we randomly sam-

pled 50 events as query events from each of the 4 regions listed in
Section 3. To avoid bias, we would like to always present 20 can-
didate events to annotators for every query event. A simple method
would be to take the top 10 candidates from each of the ranking
lists from COMBINER and EXPANDER. However, some proposed
candidates are shared by both methods, making the resultant list
less than 20 events. To solve this problem, we adopted a process
similar to interleaving [30]. Each time, we randomly picked one of
the methods (COMBINER or EXPANDER), and took the candidate
event with the highest score given by this method. This process

continued until 20 candidates were fetched. The positions of these
candidates were then shuffled before human annotations, mitigat-
ing position bias. In total, the collection process leads to 200 source
(query) events and 4,000 target candidate events.

Before conducting the comprehensive evaluation, we first ran a
preliminary study. In this pilot study, we found that annotators were
attracted to candidate events with keyword matches in title, ignor-
ing semantically relevant events. Therefore in the following stud-
ies, we remove candidates matching keywords with the query event
(excluding stopword features). This helps us evaluate methods with
respect to their semantic matching performance.

5.3 Collecting judgments
We use Amazon Mechanical Turk (AMT)5, a popular crowd-

sourcing platform to collect human judgments. For each individ-
ual annotation task, which is called HIT in AMT, we show a query
event and a list of 10 candidate events, together with the links to
their source webpages. Note that a query event appears in two
HITs, as there are 20 candidates per query. Annotators are asked
to select the degree of similarity between the query event and each
candidate event, with the following instructions

Two events are considered similar if someone who is
interested in attending one of the events will also be in-
terested in attending the other, regardless of their time
or location.

Note that we explicitly request the annotators to ignore location
and time, as the event location is already accounted for during can-
didate generation, and restriction by date could significantly reduce
the available event inventory. In real scenarios, time constraint can
be easily met by adding a filter.

Each candidate event is rated by three levels of similarity: simi-
lar, somehow similar, and not similar. To guarantee the annotation
quality, we specify the following requirements when hiring anno-
tators: each task should be judged by 3 annotators, annotators have
HIT approval rate no less than 80%, and they have at least 50 HITs
approved. A payment of $0.05 is made for each HIT per annotator.
The agreement among annotators is 0.69. The relative low score
suggests the diverse aspects of event relevance.

5.4 Metrics
We consider three metrics for evaluation, with each of them fo-

cusing on different aspects of the evaluation.
Prec@10-vote computes precision at 10 and defines ground-

truth relevance by majority vote. That is, a candidate event is con-
sidered similar to a query event if at least 2 of the 3 annotators label
it as somehow similar or similar.

Prec@10-relax is more relaxed, which considers an event as
similar as long as a single annotator thinks so. We include this
metric because event relevance could have diverse aspects, and dif-
ferent opinions from people could measure this diversity to some
extent.

NDCG@10 automatically incorporates the degree of relevance
when evaluating methods. The ground-truth score of NDCG@10
is accumulated from all annotators, with not similar corresponding
to 0 points, somehow similar to 1 point and similar to 2 points,
resulting in a [0− 6] grading scale.

Except for Prec@10-relax, the measures are in general accuracy
oriented, without much consideration of diversity. We give more
analysis on diversity in Section 6.1 and 6.2, where we do content
analysis, and use an entropy-based measure to study diversity.

5https://www.mturk.com/mturk

https://www.mturk.com/mturk


5.5 Method Evaluation
Baselines. Existing methods on entity search rely on labeled

data set, such that methods like matrix factorization [25] and learn-
ing to rank [9] could be used. In absence of labeled data, we com-
pare our proposed methods to retrieval-based ones.

It can be observed that individual rankers, e.g., TITLE, are an
instantiation of a KL-divergence similarity, a simple but effective
retrieval method [41]. Hence, the individual rankers could natu-
rally serve as baseline methods. However, we only include COM-
BINER and EXPANDER for human judgments. First, many of the
individual rankers are sparse, and exhibit performance inferior to
COMBINER and EXPANDER in preliminary studies. Second, as an
an ensemble of individual rankers, COMBINER was shown to be a
highly effective baseline in prior work [8]. Third, we still evaluate
the effectiveness of individual rankers by doing feature analysis in
Section 6.4.

COMBINER++. We combine the ranking list of COMBINER
and EXPANDER still by Reciprocal Rank Fusion [8], but with a
weighted version of Equation 5: sc(S, T ) =

∑
j

wj

r
j
S,T

+K
, where

wj is the weight of rankerj , optimized using fold splits defined
above. Note that rankers here only refer to COMBINER and EX-
PANDER, excluding individual rankers used in Equation 5.

Learning to rank. When human judgments are finally available
after we evaluate competing methods, we include supervised learn-
ing methods for further experiments: we utilize learning-to-rank
techniques to analyze and compare the importance of individual
rankers. The evaluation for these methods is very similar to 10-fold
cross validation, with the exception that only 1 fold, rather than 9, is
used for training each time. This is to see whether the performance
of our methods could be enhanced with minimal supervision, and
which feature categories contribute most to such enhancement. For
each instance in the dataset, a feature value corresponds to a score
given by one of the rankers, including COMBINER, EXPANDER,
and all the individual rankers. We experiment with a set of learning-
to-rank algorithms that are provided by the library RankLib [10].
For all the methods, we use the default parameters without any ad-
ditional tuning.

6. EXPERIMENT RESULTS
Based on the annotations from AMT, the performance of pro-

posed methods are calculated and displayed in Table 3. Since all
learning-to-rank methods outperform the rest, we only show the top
three of them, listed in the last three rows of Table 3.

Table 3: Evaluation results averaged across four regions.

NDCG Prec@10-vote Prec@10-relax
COMBINER 58.86 41.95 75.20
EXPANDER 52.66 32.80 78.35*

COMBINER++ 60.08* 42.31* 77.01*
RankBoost 62.85* 44.57** 82.53**

Linear regression 63.50* 44.45** 82.98**
Coordinate Ascent 63.71** 44.71** 82.99**

*(**) indicates the improvement over COMBINER is statistically
significant according to paired t-test at the significance level of 0.05(0.01).
The last three rows are learning-to-rank methods.

Comparing methods COMBINER and EXPANDER, we obtain mixed
results. Judging by NDCG and Prec@10-vote, which care more
about agreement among annotators, COMBINER outperforms EX-
PANDER. On the other hand, EXPANDER is better on Prec@10-
relax, which reflects more subjectivity of the annotators. Given
these results, we suspect that COMBINER acts more conservatively

by giving safe and accurate results. In contrast, EXPANDER ex-
plores more, suggesting diverse and semantically relevant events.
To verify our hypothesis, we analyze the content of the evaluation
results, and find a measure to quantify diversity. The analysis is
detailed in the following subsections.

When applying rank fusion to COMBINER and EXPANDER, COM-
BINER++ achieves a balance between accuracy and diversity. It sur-
passes COMBINER significantly on all three metrics, and is compa-
rable to EXPANDER on Prec@10-relax. This means COMBINER++
provides a way to tradeoff between relevance and diversity, and
users in real scenarios could adjust the trade-off parameter for their
personal use.

When we are able to learn the importance of different rankers by
learning to rank, there is a significant improvement over methods
without supervision. The exact contribution of these rankers, or
feature categories, will be discussed in Section 6.4. With regard to
the comparison among learning-to-rank algorithms, simple models
(e.g., Coordinate Ascent and Linear regression) work better than
complex ones (e.g., LambdaMART and ListNet), possibly due to:
(1) the low dimensionality of feature space, which equals to the
number of rankers; (2) the small size of training set, as only 1 fold
of the data is used for training each time.

6.1 Content analysis
In order to further understand the behaviors of COMBINER and

EXPANDER, we sampled some annotated results, and look through
the exact events being retrieved.

Table 4: Example events where COMBINER excels.

Query event: Sacramento California Capitol Apocalypse 5k Zombie Run 2013
COMBINER EXPANDER

Score Events Score Events
6 8K Golden Gate Double Adven-

ture Run (Running)
6 Blacklight Run - San Jose (Run-

ning)
5 Run on the Parkway (Running) 2 Almaden Hacienda Hills (Hiking)
5 Lil Mud Runner Kids/ Family

Mud Run (Running)
2 Fitch Mountain Footrace

(Footracing)
Query event: Let’s Go See "Only Lovers Left Alive" | 7:15 Pm Show

COMBINER EXPANDER
Score Events Score Events

4 Birdman (Movie) 3 Jersey Boys (Drama)
2 Rocky Horror Show: The Cult

Classic Live (Show)
2 Happy Christmas Movie, Q&A

With Joe Swanberg (Movie)
2 Happy Christmas Movie, Q&A

With Joe Swanberg (Movie)
0 Foo Fighters (Music)

We first analyze cases where COMBINER outperforms EXPANDER
in terms of NDCG. This happens when query events are more fre-
quent and common, as Table 4 shows. The score is the ground-truth
score used to compute NDCG, which is accumulated from 3 anno-
tators, where similar and somewhat similar correspond to 2 and 1
points, respectively. For readability, event types are appended to
the end of each event, wrapped in parenthesis (which are hidden
from annotators).

The first query event in Table 4 is about running. Top events
ranked by COMBINER all contain the keyword run, which are ac-
curate but not diverse enough. Though EXPANDER ranks a running
event in the first place too, it lists other sports-related events like
hiking and mountain footracing, which are however labeled as not
similar by the majority of annotators. This results from anchor-
ing bias, noted in several studies on human annotations [36, 34].
When more relevant events are present – events with “run” in titles,
the relevance of hiking and footracing events could be significantly
reduced in annotator’s view.

Another example comes from a movie event. In contrast to COM-



BINER that finds many movie events, EXPANDER in addition ranks
events about drama and a rock band on top. Though both movies
and rock bands belong to the category of entertainment, none of the
annotators think they are relevant, which is, again, likely caused by
the anchoring bias.

Table 5: Example events where EXPANDER excels.

Query event: Hiking Trip: Armstrong Woods With Marcia 7-8 Miles
COMBINER EXPANDER

Score Events Score Events
1 Health 2.0 Sacramento Presents:

Telemedicine 2015, A Multi Bil-
lion$ Market (Healthcare)

4 Rock Climbing: Yosemite:
Snake Dike (Climbing)

1 Get The Led Out - Tribute Band
(Music)

5 Sunol Wilderness Backpacking
Overnight! (Backpacking)

1 Prevention, & Treatment Of Poi-
son Oak (Plants)

6 Caving: Church Cave, Kings
Canyon National Park (Caving)

Query event: Semicon 2015
COMBINER EXPANDER

Score Events Score Events
1 Cricket World Cup- Semi Finals

(Cricket)
1 Frontiers In Optics: The 99Th

Osa Annual Meeting And Ex-
hibit/Laser Science (Optics)

1 Benefit Show For Raul And His
Girls (Show)

4 Optical Fiber Communication
Conference And Expo (Optics)

1 Career Night at College Park
High School (Career)

0 Sf: Word Of Mouth - Founder
Community (Entrepreneur)

When events are less frequent, EXPANDER begins to demon-
strate its strength in semantics, as Table 5 exemplifies. In the first
query of a hiking event, COMBINER fails to find any keyword syn-
onymous to hiking, and is almost off-topic. Contrarily, EXPANDER
suggests rock climbing, backpacking overnight, and caving, which
are all events that could be taken in mountains. Looking at the
scores, some annotators label hiking as weakly connected to health-
care, music, and plants. This behavior is also attributed to anchor-
ing bias [36, 34] – when there are less relevant events in the candi-
date list, annotators tend to give more credits to events, even though
they are not that relevant.

Another example is about a semiconductor expo, where COM-
BINER is off-topic again and EXPANDER finds events on laser sci-
ence and optical fiber. Unfortunately, many annotators fail to rec-
ognize their connections. Note that it is possible that annotators
know this connection in the second event, while not in the first.
This happens when the two events fall into different HITs, which
are completed by different annotators.

In this analysis, we find that the task of annotating event simi-
larities is both difficult and subjective. Due to the anchoring bias,
annotators tend to raise their judgment threshold of relevance when
relevant events abound, assigning a lower score to events that are
somewhat similar. While in the opposite scenario, where fewer rel-
evant events are available, annotators are inclined to reduce their
threshold. This cannot be avoided if multiple candidates are pre-
sented to the annotator at the same time. However, if we change
the evaluation process by showing query-candidate pairs one at a
time, other bias could be introduced. For example, pairs labeled by
different annotators might not be comparable, due to subjectivity.
Even for the same annotator, they might change their mind as more
pairs are revealed.

Despite the difficulty of annotation, some insights can still be
gained from the judged results. COMBINER is good at finding out
closely related events for common event themes, while EXPANDER
is able to retrieve semantically relevant candidates for rarer events.
Generally speaking, common query events are more frequent in our
randomly sampled evaluation set. As a result, COMBINER, overall,
performs better on the metrics that care more about accuracy, i.e.,

NDCG and Prec@10-vote. However, integration of COMBINER
and EXPANDER via COMBINER++ and learning to rank methods
(see Table 3) can further improve performance.

6.2 Diversity analysis
Content analysis shows that EXPANDER is more exploratory, giv-

ing more diverse results. We want to examine whether this obser-
vation can be generalized to the entire dataset. Since it is neither
realistic nor objective to manually look through all the results, it
is necessary to find a way to quantify diversity. To this end, we
utilize entropy, a widely accepted measure to quantify the amount
of information contained in a message. The intuition is that, if the
candidate list of a query contains more information, the events in
the list are more diverse. In particular, we collect event titles for
the retrieved candidates of each query event. Given the set of title
text, word distribution can be computed, based on which we calcu-
late entropy: H = −

∑
i=1 p(wi) · log p(wi), where wi is the i-th

word, and the probability p(wi) is estimated by its occurrence in
the title set. The entropy is then averaged over all query events, as
shown in Table 6.

Table 6: Average entropy of candidate events.

Method Avg entropy Method Avg entropy
QUERY 1.36 SURROUND 6.89

ANCHOR 5.21 COMBINER 7.46
TAXONOMY 6.14 COMBINER++ 7.61

TITLE 6.64 EXPANDER 8.00

As we expected, EXPANDER achieves the highest entropy, cor-
roborating our thoughts on its diversity. COMBINER scores much
lower, showing that it is indeed giving results that are alike to each
other. COMBINER++ attempts to balance accuracy and diversity,
whose successfulness is reflected by its entropy score.

If we use TITLE as the reference method, COMBINER gains higher
entropy, meaning that combining a set of individual rankers could
improve the diversity. TAXONOMY and SURROUND obtain scores
very close to TITLE, indicating that their behaviors are relatively
normal. The entropy for QUERY is extremely low, largely due to
the lack of queries for many events, which will be clearer when we
analyze recall in Section 6.3. This recall problem also applies to
ANCHOR, but is less severe.

6.3 Recall analysis
Evaluating recall requires manual judgment of a large number of

events, which is empirically impossible. Hence we approximate it
by computing, for each query event, the number of candidate events
retrieved by each method, with the maximum set to 100.

Table 7: Averaged number of candidate events.

Method Avg candidates Method Avg candidates
QUERY 17.92 TITLE 89.75

ANCHOR 63.99 COMBINER 99.79
TAXONOMY 72.63 EXPANDER 100
SURROUND 83.37 COMBINER++ 100

As Table 7 shows, EXPANDER and COMBINER++ are always
able to retrieve the maximum number of candidates. By combin-
ing signals from various feature categories, COMBINER is close to
perfection. It is somewhat surprising that TITLE could fetch fairly
large number of candidates. Analysis shows that this is caused by
matches of unimportant but frequent words, which are prevalent as
we are not employing a very aggressive stopword removal. For ex-
ample, TITLE-ranker could retrieve soccer night for movie night,



since the matching of word night. As we discussed in diversity
analysis, QUERY has the lowest recall, followed by ANCHOR.

6.4 Feature analysis
In order to analyze the importance of individual feature category,

we perform an ablation study. We rerun the Coordinate Ascent, in
our case the best performing learning-to-rank algorithm, by remov-
ing one feature category at one time, while keeping all other fea-
tures present. We do not analyze TITLE-ranker here since events
with title matches are removed to encourage annotators to consider
semantic relevance. Table 8 shows the percentage of performance
reduction relative to the method using all feature categories. In
addition to removing features, we also consider using a single cat-
egory alone, with all other features excluded. The results are dis-
played in Table 9.

Table 8: Performance reduced by removing a feature category.

NDCG Prec@10-vote Prec@10-relax
QUERY 0.37% 0.77% 0.11%

ANCHOR 0.42% 0.31% 0.42%
SURROUND 2.47% 3.75% 0.45%
TAXONOMY 9.47% 10.58% 1.36%

Table 9: Performance reduced by using one feature category.

NDCG Prec@10-vote Prec@10-relax
QUERY 11.44% 13.38% 4.45%

ANCHOR 11.13% 11.97% 3.24%
SURROUND 8.74% 9.81% 2.76%
TAXONOMY 1.97% 3.27% 2.54%

Table 8 and 9 generally give consistent results. First, all numbers
being positive indicates that individual rankers are outperformed
by algorithms combining them. By integrating information from
different feature categories, our methods indeed beat baselines that
use a single feature source.

Focusing on specific feature categories, TAXONOMY plays a vi-
tal role in achieving good performance, which means that the taxo-
nomic categories provide an important source for COMBINER to re-
trieve semantically relevant events. Features extracted from anchor
and surrounding text could be quite noisy, leading to their lower
performance. In addition to noisy features, ANCHOR could also
suffer from low recall.

QUERY is least important, mainly because of the recall prob-
lem. In this learning algorithm, each feature category works inde-
pendently. Contrarily in the case of EXPANDER, identical features
from different categories are collapsed into one feature, and mes-
sages can propagate through graph. Under such circumstance, the
problem of sparseness could be alleviated and features extracted
from query could potentially make a higher contribution.

It is also interesting to compare the performance drop between
metrics. Unlike NDCG and Prec@10-vote, the decrease of Prec@10-
relax is much smaller. This is due to the existence of larger number
of relevant instances in the relaxed version of Prec@10. As a result,
it is easier for methods to attain a relatively high Prec@10-relax.

6.5 Computational cost
EXPANDER can empirically finish training all the web events in

less than 30 minutes, as it keeps constant number of labels per
node. When new events come, EXPANDER does not need to be
trained over the entire graph, as incremental inference could be per-
formed [32].

In this paper we purposefully focused on the effectiveness of
the proposed event retrieval methods, and not on their efficiency.
For online retrieval, COMBINER can be straight-forwardly imple-
mented by indexing event features in an inverted index. EXPANDER
can be updated periodically by incremental inference [32], while
caching labels for existing events and features. At new event ar-
rival, we may infer its label by looking up the cached labels of its
features in the graph.

We leave further exploration of event indexing and retrieval strate-
gies as an interesting avenue for future work.

7. CONCLUSION AND FUTURE WORK
In this paper, we consider the problem of related event discov-

ery. In particular, we study events with Schema.org markup. Due
to the temporal and local nature of events, ground-truth information
is hard to acquire. In addition, limited information can be extracted
from the event itself, while its contextual information is sparse and
noisy. In face of these challenges, we propose a graph-based frame-
work to retrieve a ranked list of events for a source event. Our
framework is unsupervised, and addresses the semantic relevance
in a self-contained manner.

We evaluate our framework using Amazon Mechanical Turk,
and demonstrate the feasibility of its two proposed variants: COM-
BINER and EXPANDER. Analysis shows that COMBINER is more
precise, while EXPANDER provides more diverse results. Their
combination balances the two aspects, and the effectiveness can be
further improved when we are able to learn the importance of dif-
ferent feature categories with minimum supervision. Feature anal-
ysis shows that our framework significantly outperforms traditional
retrieval methods based on individual feature categories, which of-
ten suffer from recall problem.
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