机器学习中核函数(Kernel)的理解

核函数是将低维非线性可分数据映射到高维空间后计算内积的简便方法,使得原本在原始空间中线性不可分的数据变得线性可分。通过核函数,可以避免直接在高维空间进行复杂计算,常见的核函数包括线性、多项式、高斯和Sigmoid核函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核函数**就是在我们将低维非线性可分的数据通过函数 Φ ( x ) \Phi(x) Φ(x)映射到高维空间之后计算内积的一种简便方法。**在这里它和映射没有任何关系。

低维到高维线性可分的映射

下面这张图位于第一、二象限内。我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母。我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横、纵坐标是两个特征。显然,在这个二维空间内,“+”“-”两类数据不是线性可分的。
{% asset_img 1.jpg %}
我们现在考虑核函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Marcus-Bao

万水千山总是情,只给五角行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值