在自然语言处理(NLP)领域,随着大型语言模型(LLMs)的快速发展,如何使这些模型更好地理解和执行人类的意图,成为了一个亟待解决的问题。尽管现有的方法如强化学习从人类反馈(RLHF)和直接偏好优化(DPO)在某种程度上有效,但它们往往需要昂贵的计算资源和对模型参数的修改。因此,研究者们提出了一种新的思路——黑箱提示优化(Black-Box Prompt Optimization,BPO),通过优化用户输入来改善模型的输出,而无需对模型进行进一步的训练。
1. 黑箱提示优化的基本概念
黑箱提示优化(BPO)是一种无需修改模型参数的对齐方法。其核心思想是通过优化用户的输入提示,使其更符合大语言模型的理解,从而更好地实现用户意图。与传统的训练方法不同,BPO采用了一种模型不可知的方式,通过人类偏好的数据来优化提示,使得模型能更准确地响应。
例如,BPO通过构建包含人类偏好特征的提示对,来训练一个提示优化器。具体而言,研究者们使用了包含14,000对原始提示及其优化版本的数据集,利用这些数据来训练一个序列到序列的模型,以自动化地优化用户输入。
2. 数据构建与训练
在黑箱提示优化的过程中,首先需要收集带有人类偏好的数据集。这些数据集包括多种指令调优数据,其中每个实例包含一个用户输入及其对应的优质和劣质响应。通过分析这些响应,BPO能够识别出哪些特征能够使模型的输出更符合人类的期望。
以下是BPO模型训练的几个关键步骤:
- 数据收集:研究者从多个公开的数据集中提取包含人类反馈的提示对,确保数据