想象你是一位探险家,手中握着一张古老的藏宝图,面前是一座堆满长篇专业文档的巨大图书馆——财务报告、法规文件、学术教科书,每一份都厚重如山,信息如迷雾般复杂。你需要找到某个关键答案,但传统的搜索工具就像指南针失灵,总是指向“差不多”的方向,而不是真正的宝藏。这就是PageIndex诞生的舞台——一个革命性的检索系统,抛弃了向量数据库的模糊“感觉”,用类人类的推理和树形结构,精准锁定文档的精髓。让我们一起踏上这场冒险,揭开PageIndex如何像侦探般破解信息迷宫的秘密,用幽默的故事和生动的比喻,让技术变得如探险小说般引人入胜。
🌟 从“相似”到“相关”:为什么PageIndex重新定义了检索
在信息检索的世界里,传统的向量数据库(RAG)就像一个热情但有点迷糊的图书管理员:它根据“感觉”推荐书籍,告诉你“这本看起来有点像你要的”。但正如参考文献强调的,相似 ≠ 相关。想象你在找一份关于“2023年美联储金融稳定政策”的报告,向量搜索可能会给你一堆提到“金融”或“稳定”的文件,却漏掉真正聚焦政策的那一页。PageIndex则像一位经验丰富的学者,翻开目录,逐层推理,直奔答案。
PageIndex的灵感来自AlphaGo——那个击败围棋大师的AI。它不依赖语义相似,而是通过推理驱动的RAG(Retrieval-Augmented Generation),模拟人类专家的检索方式。核心在于两步:
- 生成目录树:将文档转化为类似“目录”的树形结构,捕捉其层次和语义。
- 树