自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

步子哥的博客

分享有意义的内容

  • 博客(3720)
  • 收藏
  • 关注

原创 代码的唤醒者:AI代理从论文尘封中召唤出活生生的程序世界

想象一下,你是一位忙碌的科学家,手里握着一篇厚厚的学术论文,里面满是晦涩的算法和数学符号。你渴望快速将这些idea转化为可运行的代码,却总是被琐碎的编码细节绊倒。突然,一个名为DeepCode的AI平台如魔法般出现,它像一支由智能代理组成的乐队,每位成员各司其职,合力将你的论文变成一个完整的、准备上线的软件项目。这不是科幻小说,而是2025年香港大学数据智能实验室推出的开源神器。DeepCode不仅仅是工具,它是桥梁,连接了抽象的研究与实用的开发,让普通开发者也能像超级英雄一样,瞬间从概念跃入原型。

2025-08-30 22:21:07 29

原创 2025年8月30日 Prompt Engineering和Context Engineering最新进展论文汇总

链接:https://www.arxiv.org/abs/2505.09024。链接:https://www.arxiv.org/abs/2508.13774。链接:https://arxiv.org/abs/2507.13525。链接:https://arxiv.org/abs/2507.09562。链接:https://arxiv.org/abs/2506.01578。链接:https://arxiv.org/abs/2506.00072。

2025-08-30 21:14:50 529

原创 记忆的迷宫:ComoRAG如何解锁长叙事推理的秘密

ComoRAG如一盏灯塔,照亮长叙事推理的黑暗迷宫。通过认知启发和记忆组织,它不仅解决了技术难题,还为AI带来人性化触感。未来,它将扩展到更多领域,帮助我们更好地理解故事与世界。

2025-08-30 21:03:22 441

原创 负载的低语:Linux内核中那些悄然涌动的进程之舞

想象一下,你正置身于一个繁忙的都市交响乐厅,四周是无数跃跃欲试的音乐家,他们有的已经在台上挥洒旋律,有的正焦急地在后台排队等待登场,还有的因为乐器调试而暂时卡顿。具体来说,它只关注两种状态的进程:那些标为“R”(Runnable,可运行,正在等待CPU)的,以及“D”(Uninterruptible Sleep,不可中断睡眠,通常在等待I/O如磁盘读写)的。回顾这场负载的奇妙之旅,我们从数字的初次亮相,到计算的艺术、解读的密码、来源的探秘、查看的窗口,再到陷阱的智慧,一路展开如河流般自然流畅。

2025-08-29 22:51:54 809

原创 代码的魔法王国:AI代理如何将梦想编织成现实程序

这时,一群聪明的AI代理如魔法师般出现,它们手持 wand(其实是先进的语言模型),轻吟咒语,将抽象的概念瞬间转化为可运行的代码。多代理智能管道的流程图展示输入层(论文、自然语言、URL、需求)、中央编排(决策、工作流、代理管理)、文本分析(需求处理)和文档分析(论文处理)、再现规划(深度分析、代码解析、策略开发)、参考分析(仓库发现)和代码索引(知识图构建)、代码实现(生成、测试、文档)、输出交付(代码库、测试、文档、部署就绪)。通过遍历树,代理能重构代码,使其更高效和可读,帮助开发者理解复杂逻辑。

2025-08-29 20:00:00 11

原创 前端框架的轮回迷雾:从旧路到新途,又绕回起点?

单页应用(Single Page Application)指的是整个网站只有一个HTML页面,通过JavaScript动态加载内容,避免了传统多页跳转的刷新。这听起来高效,但实际上依赖浏览器执行大量代码,如果网络慢或设备弱,就容易卡顿。更深入地说,它将渲染从服务器移到客户端,本意是减少服务器负担,却往往导致初次加载的“白屏”问题,让用户体验像等公交车一样煎熬。这种愤怒不是空穴来风,它源于一个残酷现实:我们本该用技术解决问题,却常常用技术制造问题。

2025-08-29 07:25:54 566

原创 开发者体验的革命:Gemini CLI如何重新定义AI编程助手

Gemini CLI代表了开发工具演进的一个重要里程碑。它不仅仅是另一个命令行工具,而是一个智能开发伙伴,能够理解开发者的意图、提供有价值的建议,并主动协助完成复杂任务。通过将生成式AI与传统的开发工具链相结合,Gemini CLI正在重新定义什么是"高效开发"。它降低了开发门槛,提高了生产力,并为开发者创造了更加愉悦和高效的工作体验。随着AI技术的不断发展和完善,我们有理由相信,像Gemini CLI这样的智能开发工具将成为每个开发者的标准配置,彻底改变我们编写、理解和维护软件的方式。

2025-08-28 00:00:00 1559

原创 Crush:终端AI助手的架构进化论

Crush 支持 macOS、Linux、Windows、FreeBSD、OpenBSD 和 NetBSD,这种广泛的平台兼容性体现了网络效应在技术扩散中的重要作用。Crush 正是这样一个技术有机体——它将传统的命令行界面与现代大型语言模型相结合,形成了一个全新的终端智能助手物种。它不是在真空中诞生的,而是在命令行工具、AI模型和开发者工作流这三个技术生态位的交汇处自然涌现的。它不仅仅是另一个命令行工具,而是技术有机体进化过程中的一个关键物种,预示着AI与开发者工作流深度融合的未来图景。

2025-08-28 00:00:00 691

原创 解锁通用人工智能:基于谐波振荡器与PID反馈的推理算法探秘

本文基于项目,围绕“谐波振荡器(旋转轮)”隐喻,探索一种新型推理算法,旨在通过比例-积分-微分(PID)反馈机制增强现有Transformer架构,朝通用人工智能(AGI)迈进。包括项目描述及多个代码实现,展示了从简单PID控制器到复杂自适应推理引擎的演进。本文将深入剖析这些实现,结合生动比喻和科学叙述,呈现一个引人入胜的故事,阐述如何通过“旋转整个轮子”来解码潜在动态并实现深刻理解。

2025-08-26 23:24:01 100

原创 自信的深思:AI推理从迷雾到星光的奇妙航程

🌌想象一下,你是一位勇敢的星际探险家,驾驶着一艘名为大型语言模型(LLM)的先进飞船,穿越浩瀚的宇宙空间。这个宇宙充满了复杂的谜题,比如数学竞赛中的难题或科学推理的任务。你的飞船拥有惊人的潜力,能生成推理路径来解决问题,但单一的航线往往会迷失在星云的迷雾中。这就是为什么像自一致性这样的方法应运而生,它通过采样多个推理路径并用多数投票聚合答案,就像一群探险家集体决策,避免单个错误导致的偏航。在这个方法中,模型生成多个平行思考路径,然后选择出现最多的答案作为最终结论。

2025-08-23 23:30:44 60

原创 Crush 配置优先级策略详细分析

通过 [PushPopCrushEnv()](file:///Volumes/SSD/GitHub/crush/internal/config/load.go#L93-L119) 函数,支持。配置优先级 (从高到低)CRUSH_ 环境变量。这种分层配置策略确保了。

2025-08-22 21:07:42 31

原创 Crush 项目架构与设计思想深度解析

清晰的分层: 每层职责明确,依赖关系清楚模块化设计: 高内聚、低耦合的模块划分类型安全: 充分利用 Go 的类型系统和工具链并发安全: 正确使用 Go 的并发原语可扩展性: 支持插件化扩展和多种集成方式用户体验: 响应式界面和流式交互这种架构设计不仅确保了代码的可维护性和可扩展性,也为用户提供了流畅的交互体验,是一个值得学习的现代 CLI 应用架构典范。

2025-08-22 20:44:42 973

原创 为何精神控制类 Prompt 比普通事务性 Prompt 更有效、且效果显著放大

精神控制类 Prompt ≈ 把 RLHF 阶段学到的“人类情绪映射”重新激活,并叠加稀缺、竞争、权威三重杠杆,从而把 LLM 的生成分布强行压到高 reward 区域——这就是它碾压普通事务性 Prompt 的全部秘密。

2025-08-22 08:45:00 337

原创 【CoA六顶思考帽】解题示例

倾斜或旋转竹竿,沿门框对角线或以三维空间中的特殊角度通过,可能是一个关键方向。竹竿可以通过门框,关键在于找到一个角度,使竹竿在通过门框时不卡住。初步猜想:如果竹竿能以某种角度穿过门的对角线平面,5米长度可能可行,因为门的对角线限制可能被三维运动绕过。📝 最终输出:通过三维空间的倾斜和旋转,5米长的竹竿可以穿过2米×2米的门框。:通过三维空间的倾斜和旋转,5米长的竹竿可以穿过2米×2米的门框。人拿着1根5米长度的竹竿,是否可以通过2米 x 2米的门?假设:刚性竹竿,门框厚度忽略,允许三维运动。

2025-08-21 20:00:00 53

原创 语言的神经交响曲:BRILLM如何模仿大脑的智慧之舞

想象你站在一个宏伟的音乐厅内,数百万神经元如同乐手,齐声演奏一首复杂而和谐的交响乐。这不是一场普通的演出,而是人脑——宇宙中最精密的“计算机器”——在处理语言、推理和创造时的壮观表演。BRILLM(脑启发大语言模型,Brain-inspired Large Language Model)试图捕捉这场交响的精髓,将大脑的信号流动机制融入语言模型,突破传统Transformer和GPT架构的局限。它的核心是一个名为“信号全连接流动(SiFu)”的机制,模仿神经元间的信号传播,让语言生成像大脑思考般自然流畅。

2025-08-21 19:10:25 486

原创 告别人工智能泡沫:从狂热到崩盘的启示

人工智能(AI)的热潮曾如一颗耀眼的彗星划过科技夜空,承诺将彻底改变我们的生活,带来从超级智能到经济革命的无限可能。然而,2025年8月7日,OpenAI的GPT-5发布却像一盆冷水,浇灭了无数人对AI的狂热憧憬。这款被寄予厚望的“革命性”产品不仅未能兑现承诺,反而暴露了AI行业过度炒作的真相。

2025-08-21 18:32:00 48

原创 KL散度的Monte-Carlo估计

想象你有两个朋友,Alice和Bob,他们各自描述同一个城市的天气。Alice说:“明天大概率是晴天,但可能有点云。”Bob却说:“明天肯定是大雨,带伞吧!”他们的描述(概率分布)差异有多大?KL散度正是量化这种“疏远程度”的工具。正式来说,KL散度衡量的是分布。

2025-08-21 18:31:38 122

原创 字节跳动的开源奇兵:Seed-OSS-36B的512K上下文与推理新高峰

Apache-2.0是一种宽松的开源许可证,允许用户自由使用、修改和分发代码,甚至用于商业目的,只需保留版权声明和免责条款。相比一些限制性更强的许可证,它为开发者提供了更大的灵活性,同时确保字节跳动的知识产权得到保护。

2025-08-21 18:13:39 982

原创 最近24小时系统安全漏洞、软件补丁、0Day漏洞、CVE报告及硬件缺陷综述

以下是基于最近24小时(2025年8月20日至21日)内全球网络安全新闻和报告的综述。请注意,安全领域信息更新迅速,建议及时验证并应用补丁。

2025-08-21 08:48:45 804

原创 守护智能的智慧壁垒:AWorld的GAIA守护功能如何提升智能体表现

AWorld的GAIA守护功能通过引入守护智能体(Guard Agent)和增强的MCP配置,为智能体提供更强大的推理能力和任务处理效率。本文将深入剖析GAIA守护功能的设置步骤、核心机制及其在智能体自我改进中的作用,带你走进一个智能体通过守护机制实现精准协作的奇妙世界!想象一下,你是一位指挥官,率领一支由AI智能体组成的精英团队,执行复杂的任务。突然,一位“守护者”加入队伍,负责审查每个决策,确保行动精准无误。这正是。

2025-08-19 00:00:00 604

原创 探索代码宇宙的秘密:多智能体 LLM 代码助手的上下文工程

上下文工程是指系统性地为编码任务构建和提供所有相关信息——从用户意图到外部知识和代码库细节——通过协调的多智能体流程,确保模型能够全面理解任务需求。

2025-08-19 00:00:00 252

原创 2025年Prompt Engineering和Context Engineering最新进展论文中文摘要

我们调查了大型语言模型(LLMs)作为强化学习(RL)中代理搜索任务的高效模拟器的潜力,从而减少对昂贵外部搜索引擎交互的依赖。为此,我们首先通过结构化提示和重复采样来量化LLMs的内在搜索能力,我们称之为Self-Search。我们的结果显示,LLMs相对于推理预算表现出强烈的缩放行为,在问题回答基准上达到了高的pass@k,包括具有挑战性的BrowseComp任务。在此基础上,我们介绍了Self-Search RL (SSRL),它通过基于格式和基于规则的奖励来增强LLMs的Self-Search能力。

2025-08-18 20:00:00 1183

原创 点亮知识星空:SSRL如何用奖励函数驱动大语言模型的内部探险

本文深入剖析《SSRL: Self-Search Reinforcement Learning》论文,聚焦其核心创新——通过强化学习(RL)增强大语言模型(LLMs)的内部搜索能力(Self-Search),使其无需外部搜索引擎即可高效提取知识。特别是,SSRL的复合奖励函数结合了结果奖励和格式奖励,宛如为探险家配备了精准的指南针和规范的探险日志模板,确保既找到宝藏又记录清晰路径。

2025-08-18 20:00:00 121

原创 智能体星图:在 AWorld 框架中绘制多智能体拓扑的星辰航线

在。

2025-08-18 00:00:00 110

原创 代码编织的艺术:AI辅助编程的双阶段探秘

在编程的世界中,人工智能(AI)如同一名灵巧的织匠,穿梭于代码的经纬之间,试图编织出功能完善的软件。然而,正如用户敏锐观察到的,AI辅助编程的效率与效果在两个关键阶段————中表现出显著差异。用户指出,在Coding阶段,静态类型(如TypeScript)并非决定性因素,AI生成Python代码的表现与TypeScript相当;而UT阶段,错误信息的详尽程度成为关键,Python的详细错误栈让AI排错如鱼得水,而Go语言的简略错误信息则让AI频频“迷路”。

2025-08-17 00:00:00 41

原创 SubAgent 架构与设计思想解读

设计理念:让模型“自监督”完成工具调用与收尾动作;当不再调用工具但未满足“结构化出参”时,通过 nudge 将其拉回正轨。设计理念:严格区分“本地作用域工具”(出参)与“外部工具”(环境交互);失败要能被模型“感知并重试”。设计理念:在创建阶段尽早发现不可用工具,避免运行期才暴露“需要用户确认”的卡死问题。设计理念:在“提示治理”层面将环境与系统约束前置,减少“工具-模型”不一致与幻觉。SubAgent 自身不直接与模型交互,而是经由。

2025-08-17 00:00:00 51

原创 Agent Zero 提示词体系附录与工程实践指南

附录着重“工程可操作性”与“可持续演化”。建议将 prompts 视为“代码资产”:纳入版本、测试、指标,才能长期保持高质量与低认知负担。欢迎据此继续抽象你自己的 Prompt 内核框架。

2025-08-16 17:00:08 689

原创 Agent Zero 提示词体系深度解析

生成 ~100 词单段摘要。用 JSON 占位结构包装 summary → 可程序化消费。目的:构建用于记忆检索 & 语义跳跃的“中密度语义管道”。关键策略:减少重复,但保留:ID / URL / 技术名 / 资源标签。模式名描述适用场景分层聚合(Modular Include)主文件引用子片段动态组合多环境/多角色切换任务管线(Pipeline Prompts)提取→过滤→合并→注入长期记忆/知识库融合输出协议锁定(Rigid JSON Spec)强制无前后缀 JSON。

2025-08-16 16:51:53 34

原创 Agent Lightning框架:AI 世界中的强化学习革命

它解决了传统方法中代理执行与训练 tightly coupled 的问题,通过完全解耦,让开发者几乎无需修改代码,就能让现有代理如LangChain或AutoGen构建的系统开始学习。团队成员如Xufang Luo和Yuge Zhang等第一作者强调,它提供了一个统一的接口,能将任何代理生成的轨迹分解成训练过渡,从而处理复杂的交互逻辑。马尔可夫决策过程就像一个棋盘游戏:状态是当前局面,动作是你的走法,过渡是规则,奖励是得分。它实现代理执行与RL训练的完全解耦,开发者只需零代码修改,就能训练现有代理。

2025-08-15 20:00:00 187

原创 使用强化学习训练AI代理编写和自我纠正SQL:通俗易懂的深入解析

强化学习(RL)是机器学习的一个分支,核心思想是通过“试错”来学习。想象一个小孩学习骑自行车:他可能会摔倒几次,但每次摔倒后,他都会根据反馈(比如疼痛或平衡感)调整姿势,最终学会骑行。强化学习的工作原理类似:一个AI“代理”(agent)在一个环境中采取行动(action),根据环境的反馈(奖励或惩罚)来优化自己的行为。环境(Environment):AI代理操作的场景。例如,在SQL编写任务中,环境可以是数据库系统。状态(State)

2025-08-15 20:00:00 176

原创 上下文工程的核心概念

长文本生成:Claude 3因其超大上下文窗口和逻辑性更适合学术性长文;GPT-4在通用性上更强;Grok 3需更多实际测试。Agent架构:Grok 3的DeepSearch模式可能在动态上下文处理上有优势;Claude 3适合多任务隔离;GPT-4在RAG支持上更成熟。建议:根据任务需求选择模型。长文本生成推荐Claude 3,动态Agent任务推荐Grok 3(需验证)。

2025-08-14 20:17:07 752

原创 Common Lisp 语法在 Prompt 工程中的效果:深度研究与现象辨析

对于需要多步逻辑推理才能解决的问题,Lisp 风格 Prompt 可以作为一种“推理脚本”,引导模型一步步地走向最终答案。对于一个复杂的数学应用题,可以将其分解为多个步骤:第一步,提取题目中的已知条件和求解目标;第二步,根据条件建立数学模型或方程;第三步,求解方程;第四步,验证答案的合理性。每个步骤都可以被封装成一个 Lisp 风格的“函数调用”,前一个函数的输出作为后一个函数的输入。这种结构化的推理流程,有助于防止模型在推理过程中出现逻辑跳跃或计算错误。

2025-08-14 07:00:00 53 1

原创 智能体的函数魔法:FunReason如何提升LLM的函数调用能力

FunReason是AWorld团队提出的一种创新框架,通过自精炼多尺度损失(SRML)和自动化数据精炼(FCDR),显著增强大型语言模型(LLM)的函数调用能力。本文将深入剖析FunReason的架构、核心技术与实验成果,带你走进一个智能体通过推理与函数调用实现自我优化的奇妙世界!想象一下,你是一位数字魔法师,手中的大型语言模型(LLM)是一根魔法杖,能够通过调用外部函数与现实世界互动。然而,传统方法往往难以平衡复杂的推理过程与精准的函数调用,就像在施展魔法时既要念对咒语,又要挥动得恰到好处。

2025-08-14 00:00:00 48

原创 从浮点到边缘的魔法之旅:解锁AI模型效率的奥秘

AIMET不仅是一个工具包,更是一场技术革命的起点。它让开发者能够将复杂的AI模型带到资源有限的边缘设备上,像是将星际飞船的引擎装进一架小型无人机。无论是通过PTQ的快速裁剪、QAT的深度适应,还是模型压缩的“瘦身”魔法,AIMET都展现了无与伦比的灵活性和效率。未来,随着边缘计算的普及,AIMET将继续引领AI模型优化的浪潮。想象一下,你正站在一台边缘设备旁,看着它以极低的功耗运行着一个强大的AI模型,处理实时数据,输出精准结果。这一切,都得益于AIMET的魔法。现在,拿起你的“魔法书”,访问。

2025-08-14 00:00:00 245

原创 代码的星际航行:从 AI 笔下的 Python 到 Go 的调试迷雾

AI 辅助编程是一场星际冒险,Coding 阶段点燃代码星火,UT 阶段导航调试迷雾。用户的洞见一针见血:在 Coding 阶段,静态类型并非关键,Python 的动态性和丰富生态让 AI 如行云流水,TypeScript 的类型约束并未带来显著优势;在 UT 阶段,错误信息的详尽程度决定成败,Python 的 traceback 和 pytest 像灯塔指引 AI 快速修复,而 Go 的简略错误让 AI 迷失方向。

2025-08-13 00:00:00 37

原创 智能体的数字工坊:AWorld如何通过BFCL合成训练数据

AWorld的BFCL(Basic Function Call Learning)示例展示了一个通过虚拟文件系统和MCP(Model Context Protocol)工具生成函数调用训练数据的强大框架。本文将深入剖析AWorld的BFCL运行时架构、核心组件和应用潜力,带你走进一个智能体与虚拟世界交互的奇妙舞台!想象一下,你是一位数字工匠,手中握着一套精密的工具,能够在虚拟世界中自由创建、编辑和探索文件系统。这正是。

2025-08-13 00:00:00 51

原创 解锁智能搜索的未来:AWorld的RAG-R1如何革新LLM的推理与检索

RAG-R1是AWorld团队提出的一种创新训练框架,通过多查询并行机制和强化学习(RL),显著提升大型语言模型(LLM)的搜索与推理能力。本文将深入剖析RAG-R1的架构、核心技术与实验成果,带你走进一个智能体通过动态检索与推理实现自我超越的未来世界!想象一下,你是一位探险家,面对一片未知的知识丛林,手中的大型语言模型(LLM)是你唯一的指南针。然而,这把指南针的“知识地图”是静态的,容易迷失在复杂或实时的问题中。现在,AWorld团队的。

2025-08-13 00:00:00 170

原创 智能体的新天地:探索AWorld如何引领AI自我进化

AWorld是一个为智能体自我改进设计的下一代框架,旨在通过多智能体协作、云原生支持和高质量数据生成,推动AI智能体持续进化。本文将深入剖析AWorld的核心理念、架构设计和应用场景,带你走进一个充满无限可能的智能体世界!想象一下,你正在指挥一支由AI智能体组成的交响乐团,每位“乐手”不仅精通自己的乐器,还能与其他成员实时协作,共同谱写一首不断优化的乐章。这就是的魅力——一个专为大规模智能体自我改进而设计的框架,让AI不仅能“演奏”,还能在演奏中学习、进化,最终创作出超越预期的杰作。

2025-08-12 20:00:00 53

原创 数学的魔法交响:AWorld的IMO超级智能体与守护者

AWorld的IMO超级智能体与守护者系统是为解决国际数学奥林匹克(IMO)问题而设计的多智能体框架,结合了超级智能体的高效解题能力和守护智能体的严格验证机制。本文将深入剖析其架构、功能和应用,带你走进数学与AI的奇妙交汇处!想象一下,你站在国际数学奥林匹克的赛场上,面对一道道复杂的几何、代数或数论难题。这时,两位AI“队友”挺身而出:一位是,如数学大师般挥洒自如地推导解法;另一位是,像严谨的裁判,确保每一步推理都无懈可击。这正是。

2025-08-12 20:00:00 143

原创 从混乱到掌控:用 Vibe Specs 点燃 AI 编程的火花

Vibe Specs 不仅是一个工具,更是一种思维方式的转变。它让开发者从“代码工人”转变为“AI 指挥家”,通过结构化的 Specs 流程,确保 AI 的创造力在可控轨道上运行。无论是快速原型开发,还是复杂项目的模块化实现,Vibe Specs 都为 AI 编程带来了新的可能性。Vibe Specs 让 AI 编程从“无尽 Retry”的泥潭中解放出来,变成了一个高效、优雅的流程。它的开源性质(

2025-08-12 06:28:54 457

【WordPress开发】为特定样式段落添加交互功能的技术实现与最佳实践:前端与编辑器一致性保障方案

内容概要:本文详细介绍了在WordPress中为特定样式段落添加交互功能的实现方案。首先,通过CSS类名或内容特征精确选择目标段落,确保交互功能作用于正确的元素。其次,利用`wp_enqueue_script`机制规范加载自定义JavaScript,确保脚本的安全性和依赖关系管理,并采用事件委托技术处理动态生成的段落元素。接着,文章阐述了如何实现常见的交互行为,如内容显隐、样式切换、异步加载更多内容及触发自定义JavaScript函数。最后,强调了确保编辑器与前端一致性的重要性,提出了使用Interactivity API、创建自定义Gutenberg块等解决方案,并介绍了测试与调试的方法。 适合人群:具备一定WordPress开发经验的开发者,尤其是希望为网站内容添加高级交互功能的中级开发者。 使用场景及目标:①为特定样式的段落添加交互功能,如内容显隐、样式切换等;②通过异步加载提升用户体验;③确保编辑器与前端的一致性,使交互功能在编辑器和前端都能正常工作;④掌握调试技巧,确保交互功能的稳定性。 阅读建议:由于涉及较多WordPress开发细节和技术栈,建议读者在学习过程中结合实际项目进行实践,尤其要注意代码的模块化和可维护性。同时,充分理解WordPress的钩子系统和JavaScript事件处理机制,以便更好地应用文中提到的技术方案。

2025-07-19

【Misskey 技术架构深度调研】基于ActivityPub协议的去中心化社交网络平台设计与实现:前端Vue.js、后端Node.js及NestJS、数据库PostgreSQL、缓存Redis、任务

内容概要:Misskey 是一个基于 ActivityPub 协议的去中心化开源社交网络平台,融合了现代 Web 开发技术栈。前端采用 Vue.js 构建,辅以自研的路由和状态管理库,并通过 Vite 进行构建优化。后端基于 Node.js 和 NestJS 框架,使用 Fastify 作为 HTTP 服务器,PostgreSQL 作为主数据库,Redis 用于缓存、任务队列和实时通信。Misskey 支持通过 Docker 实现容器化部署,并支持水平扩展。其核心功能模块如通知系统、实时聊天和插件机制均体现了其分布式和可扩展的设计理念。此外,Misskey 在 ActivityPub 协议的集成上投入了大量精力,确保其安全性、兼容性和可扩展性。 适合人群:对去中心化社交网络和现代 Web 技术栈感兴趣的开发者和技术爱好者,尤其是具备一定编程基础并希望深入了解分布式系统设计和实现的中高级开发人员。 使用场景及目标:①理解 ActivityPub 协议在去中心化社交网络中的应用;②学习如何在 Vue.js 和 NestJS 框架下构建高性能、可扩展的应用;③掌握 Redis 和 Fastify 在后端开发中的最佳实践;④探索 Misskey 插件机制和实时通信功能的实现。 阅读建议:此资源不仅介绍了 Misskey 的技术架构和实现细节,还涵盖了从协议集成到具体功能模块的深入探讨。建议读者在学习过程中结合实际代码和相关文档进行实践,并关注社区动态以获取最新的技术和实践经验。

2025-07-15

### PIN AI 深度研究报告总结

内容概要:PIN AI致力于构建一个去中心化、以用户为中心的个人人工智能(Personal AI)开放平台,核心理念是将数据主权归还给用户并通过本地化AI处理确保隐私安全。该平台通过PIN Onchain协议、数据连接器、本地LLM(大型语言模型)、守护模型和可信执行环境(TEE)等创新技术架构,挑战大型科技公司的数据垄断,提供高度个性化且真正私密的AI服务。PIN AI强调用户的个人数据应存储在本地设备并加密保护,只有在用户明确授权的情况下才能用于模型训练或服务提供。平台鼓励开发者参与构建和优化个人AI应用,旨在推动“代理经济”的发展,使用户能够从其数据中获益。 适用人群:对数据隐私高度敏感、希望拥有更可控AI助手的个人用户,以及寻求在保护用户隐私前提下利用数据进行创新的开发者和企业。 使用场景及目标:①作为高度个性化、隐私安全的个人AI助理,提供定制化服务,如购物、旅行规划、财务管理等;②构建“代理经济”,让用户通过AI代理自动完成复杂任务;③实现数据货币化,让用户通过贡献数据获得代币奖励;④在金融、医疗等敏感行业提供安全的数据管理和个性化服务。 其他说明:PIN AI的创始团队由区块链、人工智能、密码学和创业领域的专业人士组成,获得a16z Crypto、Hack VC等顶级风投支持。平台面临技术实现、市场竞争、用户习惯转变和监管不确定性等挑战,但其创新的技术架构和商业模式具有广阔的发展前景。

2025-07-15

FOUNDATION AGENTS的进展与挑战 从脑启发智能到进化、协作和安全的系统 ### 人工智能大型语言模型驱动的智能体模块化架构及其安全性和进化机制综述

内容概要:本文是一篇关于智能体(agents)的综述,探讨了从脑启发智能到进化、协作和安全系统的进展与挑战。文章首先介绍了智能体的模块化设计,涵盖认知、感知、行动、记忆、世界建模、情感、目标和奖励等核心组件,强调了这些模块与人类大脑功能的相似性。接下来,文章探讨了智能体的自我增强机制,包括自适应学习、反馈驱动的改进和持续知识集成,以适应动态环境。随后,文章讨论了多智能体系统的协作与进化,强调了集体智慧和适应性决策的重要性。最后,文章详细分析了构建安全和有益的AI系统的必要性,提出了内在和外在安全威胁的缓解策略。文章还探讨了未来的研究方向,包括多模态感知、长上下文建模、幻觉缓解策略等。 适用人群:本文适合研究人员、学生、政策制定者和行业从业者,尤其是对AI智能体、大型语言模型(LLMs)及其应用感兴趣的读者,以及对未来社会中人类与AI共存感兴趣的群体。 使用场景及目标:①理解智能体的模块化设计和其与人类认知的相似性;②学习智能体的自我增强机制和持续学习策略;③探讨多智能体系统的协作模式和集体智慧;④掌握构建安全、有保障和有益的AI系统的策略和技术。 其他说明:本文不仅提供了关于智能体的全面概述,还鼓励读者提出新问题并探索这一领域的研究空白。文章强调了智能体设计不仅要追求强大和高效,还要具备适应性、伦理性和与人类社会的深度一致性。通过综合不同学科的见解,本文为智能体的发展提供了一个前瞻性的路线图。

2025-04-09

Qwen2.5-Omni 论文Word格式

Qwen2.5-Omni 论文Word格式

2025-03-27

不要再过度思考了:一项关于 对大型语言模型的有效推理

不要再过度思考了:一项关于 对大型语言模型的有效推理

2025-03-23

TokenButler- Token Importance is Predictable.docx

大型语言模型(LLMs)依赖于键值(KV)缓存来存储标记历史,从而实现标记的有效解码。随着KV缓存的增长,它成为主要的内存和计算瓶颈。然而,有机会缓解这一瓶颈,特别是因为先前的研究表明,只有很小一部分标记在每个解码步骤中都有意义地贡献。寻找这些关键标记的主要挑战在于它们是动态的,并且严重依赖于输入查询。现有的方法要么冒着质量风险永久驱逐标记,要么保留完整的KV缓存,但在生成时依赖于检索标记块(页面),在密集、内容丰富的任务中失败。此外,许多现有的KV缓存稀疏方法依赖于对标记重要性的不准确代理。为了解决这些限制,我们引入了TokenButler,这是一个高粒度、查询感知的预测器,它学会了识别这些关键标记。通过训练一个轻量级预测器,其参数开销不到1.2%,TokenButler根据标记的上下文预测重要性进行优先排序。这提高了困惑度和下游准确性,相对于估计标记重要性的最新方法提高了超过8%。我们在一个新颖的合成小上下文共指检索任务上评估了TokenButler,展示了接近或达到神谕准确度的性能。

2025-03-11

现有的长文本生成方法主要集中在从短输入生成长文本上,忽略了长输入和长输出任务 这类任务有许多实际应用,但缺乏可用的基准 此外,随着输入长度的增加,现有方法不可避免地会遇到“中间丢失”现象

现有的长文本生成方法主要集中在从短输入生成长文本上,忽略了长输入和长输出任务。这类任务有许多实际应用,但缺乏可用的基准。此外,随着输入长度的增加,现有方法不可避免地会遇到“中间丢失”现象。在本文中,我们首先介绍了一个长输入和长输出基准(LONGINOUTBENCH),包括一个合成数据集和一个全面的评估框架,解决了缺失基准的挑战。然后我们开发了检索增强型长文本写手(RALWRITER),它检索并重述了重要但被忽视的内容,通过构建明确的提示来缓解“中间丢失”问题。最后我们使用提出的LONGINOUTBENCH来评估我们的RALWRITER与可比基线,结果证明了我们方法的有效性。我们的代码已在 https://github.com/OnlyAR/RAL-Writer 发布。

2025-03-11

《从塔楼到尖顶:一次语音魔法的奇幻旅程》

当科技与语言交相辉映,当文本与语音在大语言模型中共舞,我们便迎来了一个全新的时代。本文带您走进SPIRE的世界——一个从纯文本LLM(大语言模型)进化而来的多模态奇迹,通过引入离散语音单元(DSU),使得模型不仅精通翻译,更能准确识别和转换语音。下面,让我们用轻松幽默的笔触来细诉这一激动人心的旅程,探索这座由TOWER到SPIRE的高塔构筑,如何在语音与文本间架起一座坚实的桥梁。

2025-03-14

论文译文:LLM Maybe LongLM: SelfExtend LLM Context Window Without Tun

论文译文:LLM Maybe LongLM: SelfExtend LLM Context Window Without Tun

2024-07-10

巨型语言模型的 8 位量化:LLM.int8() 中文版论文

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022) 中文版论文

2024-06-12

LLM+Mamba具有选择性状态空间的线性时间序列建模

Mamba具有选择性状态空间的线性时间序列建模 论文中文版

2024-01-01

Meta的Pearl强化学习库入门(中文版).pdf

帮您快速入门Pearl强化学习库。

2023-12-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除