python函数式编程

本文介绍了Python中的函数式编程概念,通过map、zip、reduce等高阶函数实例演示如何利用函数作为参数进行数据操作。讲解了map接收函数并应用到列表元素、zip结合两个列表元素、reduce连续应用函数实现累加等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决定梳理这个内容是因为一个课程,

1. python函数式编程

大致意思就是,让函数也成为可以传递的参数,是python的一种编程思想。

下面直接举例子说明:

def map(fn):
    """
    Higher-order map. 高阶函数
    See `<https://en.wikipedia.org/wiki/Map_(higher-order_function)>`_

    Args:
        fn (one-arg function): Function from one value to one value.

    Returns:
        function : A function that takes a list, applies `fn` to each element, and returns a
        new list
    """
    # TODO: Implement for Task 0.3.
    def _map(ls):
        return [fn(x) for x in ls]
    return _map

def neg(x):
	return -x

def negList(ls):
    "Use :func:`map` and :func:`neg` to negate each element in `ls`"
    return map(neg)(ls)

可以看到,

  • 在上面的例子中,map函数本身只有一个参数,就是传入一个函数,
  • 但是在map函数中定义了另一个函数,其有一个参数用来传递数据,同时该函数中进行了数据处理的工作,最终返回的是一个函数。
  • 调用时,map中传入一个参数,为函数名称,同时由于返回对象是一个函数,所以后面的括号(ls)实际上就是传入给返回的函数的参数。

类似的例子如:
zip函数

def zipWith(fn):
    """
    Higher-order zipwith (or map2).

    .. image:: figs/Ops/ziplist.png

    See `<https://en.wikipedia.org/wiki/Map_(higher-order_function)>`_

    Args:
        fn (two-arg function): combine two values

    Returns:
        function : takes two equally sized lists `ls1` and `ls2`, produce a new list by
        applying fn(x, y) on each pair of elements.

    """
    # TODO: Implement for Task 0.3.
    def _zip(ls1, ls2):
        # return [fn(x,y) for x,y in zip(ls1,ls2)]
        res = []
        for i in range(len(ls1)):
            res.append(fn(ls1[i], ls2[i]))
        return res

    return _zip

def addLists(ls1, ls2):
    "Add the elements of `ls1` and `ls2` using :func:`zipWith` and :func:`add`"
    return zipWith(add)(ls1, ls2)

reduce函数

def reduce(fn, start):
    r"""
    Higher-order reduce.

    .. image:: figs/Ops/reducelist.png


    Args:
        fn (two-arg function): combine two values
        start (float): start value :math:`x_0`

    Returns:
        function : function that takes a list `ls` of elements
        :math:`x_1 \ldots x_n` and computes the reduction :math:`fn(x_3, fn(x_2,
        fn(x_1, x_0)))`
    """
    # TODO: Implement for Task 0.3.
    def _reduce(ls, start=start):
        if not ls:
            return start
        start = fn(start, ls[0])
        return _reduce(ls[1:], start)

    return _reduce


def sum(ls):
    "Sum up a list using :func:`reduce` and :func:`add`."
    # TODO: Implement for Task 0.3.
    return reduce(add, 0.0)(ls)

参考:

2. 其他(minitorch)

minitorch/slides-master/docs/slides+build2/module0.1.html#/28
在这里插入图片描述
函数式编程:

  1. 函数也可以作为参数传递,像其他对象一样使用的一种编程风格
  2. Python支持的几种编程风格之一
  3. 格式化编程的一种良好范式

minitorch/slides-master/docs/slides+build2/module0.1.html#/29
在这里插入图片描述
函数式编程,使用函数作为参数,如上所示


minitorch/slides-master/docs/slides+build2/module0.1.html#/30
在这里插入图片描述


minitorch/slides-master/docs/slides+build2/module0.1.html#/31
在这里插入图片描述
Higher-order Filter(高阶函数/过滤器)


minitorch/slides-master/docs/slides+build2/module0.1.html#/35/0/2
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吨吨不打野

解决了问题,觉得还行就给点

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值