最少步数(BFS)

本文介绍了一个迷宫最短路径问题的解决方法,通过使用广度优先搜索(BFS)算法来寻找从起点到终点的最短路径。具体实现中,采用结构体存储节点信息,并借助队列进行节点遍历,同时利用方向数组定义了移动方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

这有一个迷宫,有0~8行和0~8列:

 1,1,1,1,1,1,1,1,1
 1,0,0,1,0,0,1,0,1
 1,0,0,1,1,0,0,0,1
 1,0,1,0,1,1,0,1,1
 1,0,0,0,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,0,0,0,1
 1,1,1,1,1,1,1,1,1

0表示道路,1表示墙。

现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?

(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)

输入第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。输出输出最少走几步。样例输入
2
3 1  5 7
3 1  6 7
样例输出
12
11

代码:

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
struct node
{
    int x,y,step;
};
int mp[9][9]=
{{1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,1,0,1},
{1,0,0,1,1,0,0,0,1},
{1,0,1,0,1,1,0,1,1},
{1,0,0,0,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1},
{1,1,0,1,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1},};
int dir[4][2] = {{1,0},{0,-1},{-1,0},{0,1}};
bool book[9][9];
int M,N;
void bfs(node s)
{
    book[s.x][s.y] = true;
    queue <node> q;
    q.push(s);

    while(!q.empty())
    {
        node now = q.front();
        q.pop();
        for(int i = 0; i < 4; i++)
        {
            node next;
            next.x = now.x + dir[i][0];
            next.y = now.y + dir[i][1];
            next.step = now.step + 1;

            if(next.x >= 0 && next.y >= 0 && next.x < 9 && next.y < 9
                && book[next.x][next.y] == false && mp[next.x][next.y] == 0)
            {
                if(next.x == M && next.y == N)
                {
                    cout<<next.step<<endl;
                    return ;
                }
                book[next.x][next.y] = true;
                q.push(next);
            }
        }
    }
    cout<<"0"<<endl;
}
int main()
{
    node s;
    int t;
    cin>>t;
    while(t--)
    {
        memset(book,0,sizeof(book));
        cin>>s.x>>s.y>>M>>N;
        s.step = 0;
        bfs(s);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值